The 29-Kilodalton Thiol-Dependent Peroxidase of *Entamoeba histolytica* Is a Factor Involved in Pathogenesis and Survival of the Parasite during Oxidative Stress\(^7\)

Abhik Sen,\(^1\) Nabendu Sekhar Chatterjee,\(^2\) M. Ali Akbar,\(^1\)† Nilay Nandi,\(^1\) and Pradeep Das\(^1\)\(*\)

Division of Microbiology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Belighata, Kolkata-700 010, India,\(^1\) and Division Of Biochemistry, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Belighata, Kolkata-700 010, India\(^2\)

Received 27 September 2006/Accepted 5 February 2007

The 29-kDa surface antigen (thiol-dependent peroxidase; Eh29) of *Entamoeba histolytica* exhibits peroxidative and protective antioxidant activities. During tissue invasion, the trophozoites are exposed to oxidative stress and need to deal with highly reactive oxygen species (ROS). In this investigation, attempts have been made to understand the role of the 29-kDa peroxidase gene in parasite survival and pathogenesis. Inhibition of *eh29* gene expression by antisense RNA technology has shown approximately 55% inhibition in *eh29* expression, maximum ROS accumulation, and significantly lower viability in 29-kDa downregulated trophozoites during oxidative stress. The cytopathic and cytotoxic activities were also found to decrease effectively in the 29-kDa downregulated trophozoites. Size of liver abscesses was substantially lower in hamsters inoculated with 29-kDa downregulated trophozoites compared to the normal HM1:IMSS. These findings clearly suggest that the 29-kDa protein of *E. histolytica* has a role in both survival of trophozoites in the presence of ROS and pathogenesis of amoebiasis.

Entamoeba histolytica, the enteric protozoa, is a well-established causative agent of amoebic dysentery and liver abscesses in humans (37). *E. histolytica* is well known for its high potential for invading and destroying human tissue, leading to diseases such as hemorrhagic colitis and extraintestinal abscesses (30). The parasite usually lives and multiplies within the human gut, which constitutes an environment of reduced oxygen pressure. During tissue invasion, *E. histolytica* is exposed to elevated amounts of exogenous reactive oxygen species (ROS), such as superoxide radical anions (O\(_2^-\)) and hydrogen peroxide (H\(_2\)O\(_2\)) (14, 26). These highly toxic molecules cause severe damage to biological macromolecules, leading to metabolic malfunctions. In addition, *E. histolytica* has to inactivate the ROS produced by endogenous enzymes for its survival. Several defense mechanisms exist in which a wide array of enzymatic and nonenzymatic antioxidants, including superoxide dismutase (SOD), glutathione peroxidase, catalase, and glutathione, play an active role in cell survival during oxidative stress. *E. histolytica* produces an iron-containing SOD that is induced by superoxide anions to produce H\(_2\)O\(_2\) (9). Hydroperoxides produced during oxidative stress could be detoxified by a bifunctional NADPH:flavin oxidoreductase containing NADPH-dependent disulfide reductase and a H\(_2\)O\(_2\)-forming NADPH oxidase activity (10, 12). Catalase and glutathione reductase systems are absent in *E. histolytica*, but it encodes a 29-kDa cysteine-rich antigen (thiol-dependent peroxiredoxin) located on the surface of the trophozoites (8). The 29-kDa thiol-dependent peroxiredoxin of *E. histolytica* (Eh29) is homologous to AhpC (alkyl hydroperoxide C-22 protein) of *Salmonella enterica* serovar Typhimurium and Saccharomyces cerevisiae thiol-specific antioxidant protein (17). In our previous study it was clearly demonstrated that the enzymes SOD and Eh29 increased by 1.7- and 2.1-fold, respectively, in 1-hour high-oxygen-exposed trophozoites compared to controls. This suggests the synchronous involvement of SOD and Eh29 in detoxification of ROS (1) and survival of the parasite under stressed conditions. Thus, it could be said that Eh29 plays an important role in survival of the parasite in highly oxidative environments.

Therefore, the aim of this study was to decrease the expression of Eh29 in *E. histolytica* using an antisense RNA technique and to show that the trophozoites become susceptible to oxidative stress. For antisense RNA inhibition, a series of plasmid vectors both inducible and constitutive has been successfully used to study the in vivo effects of certain genes in *Entamoeba* spp. (2, 3, 6, 19, 21, 24, 32). In this study a cloned fragment of the *E. histolytica eh29* gene was inserted in the antisense orientation in a tetracycline-inducible expression vector (18, 27, 29). Tetracycline-induced transfected trophozoites of *E. histolytica* showed reduced levels of *eh29* mRNA and protein expression. The Eh29-deficient parasites were more sensitive than the wild type to an oxygenated environment as well as H\(_2\)O\(_2\) in axenic culture.

\[\text{Received 27 September 2006/Accepted 5 February 2007}\]

\[\text{The 29-kDa surface antigen (thiol-dependent peroxidase; Eh29) of *Entamoeba histolytica* exhibits peroxidative and protective antioxidant activities. During tissue invasion, the trophozoites are exposed to oxidative stress and need to deal with highly reactive oxygen species (ROS). In this investigation, attempts have been made to understand the role of the 29-kDa peroxidase gene in parasite survival and pathogenesis. Inhibition of *eh29* gene expression by antisense RNA technology has shown approximately 55% inhibition in *eh29* expression, maximum ROS accumulation, and significantly lower viability in 29-kDa downregulated trophozoites during oxidative stress. The cytopathic and cytotoxic activities were also found to decrease effectively in the 29-kDa downregulated trophozoites. Size of liver abscesses was substantially lower in hamsters inoculated with 29-kDa downregulated trophozoites compared to the normal HM1:IMSS. These findings clearly suggest that the 29-kDa protein of *E. histolytica* has a role in both survival of trophozoites in the presence of ROS and pathogenesis of amoebiasis.}\]
Detection of reactive oxygen species. Intracellular oxidant levels were determined by the use of 2′,7′-dichlorodihydrofluorescein diacetate (H$_2$DCF-DA), which is oxidized inside the cell to the fluorescent dichlorofluorescein (DCF). Control and stressed-derived *E. histolytica* trophozoites were incubated with 0.4 mM (final concentration) DCFH-DA for 15 min in the dark. The cells were washed once in phosphate-buffered saline (pH 7.4) and immediately examined under a confocal microscope (LSM510; Zeiss) (1). Measurement was done fluorometrically with excitation at 506 nm and emission at 526 nm (1, 4). The mean fluorescent intensity was analyzed using a Beckman Coulter (Cytoflex FX 500) flow cytometer at 530 ± 30 nm. A total of 10,000 cells were analyzed per sample.

Viability assay. Trophozoites in the logarithmic growth phase were washed once with prewarmed complete TYI-S-33 medium and chilled on ice for 5 min to dislodge the cells from tube surfaces. Briefly, 2 × 106 trophozoites in 20 ml complete TYI-S-33 medium were transferred to a 90-mm tissue culture petri dish and kept at 35°C for different time periods (5 to 5 h). After each hour, culture medium was decanted and the trophozoites were collected. The viability of trophozoites was examined by trypan blue exclusion (0.5 mg/ml).

Measurement of cell viability by MTT assay. Viability of stress-induced cells was determined using an in vitro toxicity assay kit based on 3-(4,5-dimethyl-thiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) (Sigma). MTT is an organic compound which is converted to the blue formazan salt derivative by the mitochondrial dehydrogenases of metabolically active cells (9). The MTT assay was performed in ice for 4 h and followed by the addition of lysis buffer (50 mM Tris-HCl, pH 7.4 to 7.5). The formazan precipitate was solubilized in 10% sodium dodecyl sulfate (SDS) and quantified spectrophotometrically.

Viability of stress-induced cells was determined by trypan blue exclusion (0.5 mg/ml) and 150 μl of 20 mM sodium pyruvate were added to it, and activity was measured immediately at 340 nm.

Cell death assay using Annexin V-FLUOS staining kit. Annexin V staining distinguishes apoptotic cells from necrotic cells. To determine the mode of cell death, nontransfected, transfected control, uninduced, tetracycline-induced transfected trophozoites were subjected to oxidative stress for 3 h. A 100-μM aliquot of cell medium was collected; 750 μl of NADH (0.3 mg/ml) solution and 150 μl of 20 mM sodium pyruvate were added to it, and activity was measured immediately at 340 nm.

Cytotoxic activity of trophozoites on cell monolayers. Monolayers of baby hamster kidney (BHK-1) cultured cells were grown in 24-well plates in Dulbecco's modified Eagle's (DME) medium supplemented with 5% fetal calf serum for 60 to 72 h until confluence. A total of 2 × 106 trophozoites (2 × 105/ml suspended in DME medium) were added to the wells containing a BHK-1 cell monolayer (2 × 105/well) washed with serum-free DME medium. Incubation for 1 h was carried out at 37°C in a CO$_2$-containing atmosphere. The reaction was stopped by incubating the plate at 4°C for 10 min, washed with cold saline twice, fixed with 4% formaldehyde for 10 min, and finally washed with cold saline. The cells were then stained with methylene blue (0.1% in borate buffer, 0.1 M, pH 8.7) for 10 min. The excess stain was washed with 0.01 M borate buffer, and the incorporated stain was extracted using HCl (1 ml, 0.1 M) at 37°C for 30 min. The intensity of color was measured at 660 nm (5, 7).

Cytotoxic activity. The cytotoxic activity of viable trophozoites was determined by vital dye exclusion (7, 22). Freshly harvested BHK cells were washed and resuspended in TYI-S-33 medium without serum. The BHK cells were incubated with trophozoites in the ratio 6:1 (9 × 106 BHK cells, 1.5 × 106 trophozoites) at 37°C. Viability was assayed by examining the trypan blue-treated cells in a hemocytometer. The cytotoxic activity was calculated as the percentage of...
stained cells in the sample minus the percentage of stained cells in the sample with BHK cells alone. The experiment was done in triplicate.

Enzyme assay. The enzymatic activity of alcohol dehydrogenase in the trophozoite lysates from the different types of trophozoites was determined as described previously (23). One unit of activity is defined as 1 μmol of substrate reduced per min per mg of protein.

Ingestion of GFP-labeled *Escherichia coli* cells. *E. coli* cells (1 × 10⁹) containing a plasmid which expresses green fluorescent protein (GFP) were associated in culture medium with different types of trophozoites (1 × 10⁶). The trophozoites with bacteria were harvested after 1 h and washed by centrifugation, and a portion (25%) was fixed with 3.7% formaldehyde. The remaining trophozoites were resuspended in fresh culture medium and were harvested after 24 h, washed, and fixed with formaldehyde. The trophozoites containing fluorescent bacteria were examined under a confocal microscope (7), and the mean fluorescence intensity was measured in a spectrofluorimeter (Perkin-Elmer) at 470-nm excitation and 510-nm emission.

Induction of amoebic liver abscesses. Female Syrian golden hamsters (6 weeks old) were inoculated intrahepatically with 5 × 10⁶ nontransfected, transfected
control, uninduced transfected, and tetracycline-induced transfected trophozoites. Hamsters (four in each group) were sacrificed 1 week after intrahepatic inoculation, and formation of lesions was evaluated. Hamsters used in this study were approved by the Institutional Review Board, and animal experiments were conducted under appropriate regulatory guidelines.

Statistical analysis. Data are means ± standard errors of the means (SEM) of multiple experiments. Statistical differences were analyzed by one-way analysis of variance, with statistical significance being set at 0.05 (P < 0.05).

RESULTS

Dose selection of tetracycline. The viabilities of the transfected and control trophozoites were assayed with increasing doses of tetracycline in a time-dependent manner. A 24-h incubation with a 0.5-μg/ml or 1-μg/ml dose of tetracycline revealed around 97% viability. The viability was significantly decreased with a dose of 5 μg/ml tetracycline when incubated for same time period (Fig. 1A). With an increase in the period of incubation with different doses of tetracycline, the viability of the trophozoites decreased gradually. The viability was significant only with 24-h incubation on exposure to tetracycline doses of 0.5 μg/ml and 1 μg/ml, but the expression of the inserted gene was maximum with a dose of 1 μg/ml when incubated for a period of 24 h (50% downregulation in eh29 expression) compared to induction with 0.5 μg/ml (11% downregulation). After 48 h of incubation with 1 μg/ml tetracycline, eh29 expression was downregulated by 55%, while after incubation with 0.5 μg/ml tetracycline the eh29 expression was downregulated by 20% (Fig. 1B). Therefore, in the experimental procedures the transfected trophozoites were induced with a dose of 1 μg/ml of tetracycline.
Antisense eh29 significantly reduces the 29-kDa gene product. The mRNA levels of the eh29 gene in nontransfected, transfected control (pEhHYG-tetR-O-CAT-containing trophozoites), uninduced transfected trophozoites, and tetracycline-induced transfected trophozoites under normal and stress-inducing conditions were quantified using semiquantitative RT-PCR. The expression level of eh29 in tetracycline-induced trophozoites was found to be reduced by 55% from control trophozoites. The mRNA levels of eh29 in nontransfected and transfected control trophozoites were quite similar. No prominent change was noticed in the expression level of actin in the four different types of trophozoites (Fig. 2A).

Downregulation of Eh29 affects survival of the trophozoites under O2-stressed conditions. Previously, our group showed that the maximum ROS level accumulated at 3-h, high-oxygen-stressed trophozoites compared to normal trophozoites, and the level increased in the order of 1 h < 2 h < 3 h (1). In the present investigation, it was found that the mean fluorescence...
FIG. 4. Effect of antisense eh29 on physiological activity and death of the trophozoites during oxidative stress. A: Viability assay of stressed trophozoites using MTT (for details, see Materials and Methods). B: Loss of membrane integrity during oxidative stress. Release of the cytosolic enzyme pyruvate:ferredoxin oxidoreductase served as an indicator of loss of membrane integrity and thus cell viability. Bars: 1, nontransfected trophozoites; 2, pEhHYG-tetR-O-CAT-transfected control trophozoites; 3, uninduced pEhHYG-tetR-O-Reveh29-transfected trophozoites; 4, tetracycline-induced pEhHYG-tetR-O-Reveh29-transfected trophozoites; 5, 5 μM catalase-treated tetracycline-induced transfected trophozoites. Data represent means ± SEM of three independent experiments (P < 0.05). C: The cell death assay was done using an Annexin V-FLUOS kit. The left column represents propidium iodide-positive trophozoites, the middle column represents Annexin-positive trophozoites, and the right column represents a combined image. Panels: 1, nontransfected trophozoites; 2, pEhHYG-tetR-O-CAT-transfected control trophozoites; 3, uninduced pEhHYG-tetR-O-Reveh29-transfected trophozoites; 4, tetracycline-induced pEhHYG-tetR-O-Reveh29-transfected trophozoites; 5, 5 μM catalase-treated tetracycline-induced transfected trophozoites; 6, nontransfected trophozoites exposed to oxidative stress for 6 h.
intensity was maximum in tetracycline-induced pEhHYG-tetR-O-Reveh29-containing trophozoites. The comparative analysis in ROS levels demonstrated 1.672-, 1.8-, and 7-fold increases in transfected trophozoites without antisense, transfected trophozoites with antisense, and tetracycline-induced pEhHYG-tetR-O-Reveh29-transfected trophozoites, respectively (Fig. 3A and B).

Survivability of these stressed trophozoites was studied by vital dye exclusion, and it showed that tetracycline-induced pEhHYG-tetR-O-Reveh29-transfected trophozoites were 55% viable, compared to 97.5% in nontransfected trophozoites. The uninduced transfected trophozoites and the transfected control trophozoites showed 93% and 95% viability, respectively, after 3 h of oxidative stress (Fig. 3C).
Downregulation of Eh29 affects physiological activities in trophozoites. An MTT assay of the trophozoites showed that under stressed conditions the tetracycline-induced transfected trophozoites were 62.6% less metabolically active than the nontransfected trophozoites. Catalase-treated cells showed 72% viability. The transfected control trophozoites showed 99% viability, and uninduced transfected trophozoites showed 97.5% viability compared to nontransfected trophozoites (Fig. 4A).

Membrane integrity as determined by the release of pyruvate:ferredoxin oxidoreductase from the cells was found to be significantly less in the tetracycline-induced transfected trophozoites than in the nontransfected, transfected control, and uninduced transfected trophozoites. The pyruvate:ferredoxin oxidoreductase activity was almost five times higher in the induced trophozoites than the control. In catalase-treated trophozoites the pyruvate:ferredoxin oxidoreductase release was quite similar to the nontransfected trophozoites (Fig. 4B).

The cell death assay using the Annexin V-FLUOS staining kit revealed that the mode of cell death due to oxidative stress in the tetracycline-induced transfected trophozoites is necrosis, as nearly 75% of the cells were propidium iodide positive. No significant increases in dead cells were encountered in the nontransfected trophozoites. Two percent of transfected control trophozoites, 3.5% of uninduced transfected trophozoites, and 2.5% of the catalase-treated tetracycline-induced transfected trophozoites gave a propidium iodide-positive signal (Fig. 4C). In the 6-h oxidatively stressed normal cells, Annexin V-positive signal was found.

Antisense Eh29-downregulated trophozoites exhibit decreased cytopathic and cytotoxic effects. A significant decrease in cytopathic activity was observed in the tetracycline-induced transfected trophozoites (>55%) compared to normal HM1: IMSS trophozoites when allowed to interact with a monolayer of BHK cells for 60 min (Fig. 5A). Transfected control trophozoites exhibited cytopathic activity very similar to nontransfected trophozoites of the parent E. histolytica strain. The uninduced transfected trophozoites showed cytopathic activity quite similar to nontransfected trophozoites.

The cytotoxic effect of the trophozoites on BHK cells was measured by the damage to the membranes of suspended BHK cells, as detected by trypan blue exclusion. The nontransfected trophozoites showed 92% cytotoxic activity at 90 min compared to 41.6% cytotoxic activity in tetracycline-induced transfected trophozoites (>55% decrease in cytotoxicity) (Fig. 5B). The control transfected trophozoites showed very similar results (85%) as nontransfected trophozoites, and uninduced transfected trophozoites showed 74.6% cytotoxic activity.

Effect of antisense Eh29 on phagocytic ability of trophozoites. A marked decrease in the ingestion of fluorescent-labeled bacteria (Fig. 5C) was noticed in the induced transfected trophozoites (69.7%) (Fig. 5D) compared to the nontransfected, control transfected, and uninduced transfected trophozoites.

Effect of antisense inhibition of Eh29 on liver abscess formation in hamsters. To correlate the decrease in cytopathic effect with the general decrease in virulence, liver abscess formation in hamsters was observed after inoculating the animals intrahepatically with 5 × 10^7 nontransfected, transfected control, uninduced transfected, and tetracycline-induced transfected trophozoites. Hamsters inoculated with parent HM1: IMSS trophozoites, the control transfected trophozoites, or uninduced transfected trophozoites showed extensive necrotic lesions (>20 mm), while of the four hamsters inoculated with tetracycline-induced transfected trophozoites only two showed minor lesions (<10 mm) (Table 1).

DISCUSSION

Earlier, our lab demonstrated that in oxidatively stressed trophozoites, ROS levels increased in a time-dependent manner (3 h > 2 h > 1 h). A 2.1-fold overexpression of the eh29 gene was noticed in 1-h-stressed trophozoites compared to the control trophozoites. Increased levels of the 29-kDa protein were also noticed in oxidatively stressed trophozoites compared to normal trophozoites in an immunoblot assay against NICEL 11 monoclonal antibody (1). These observations clearly suggested a possible role of Eh29 in the survival of the parasite and maintaining the pathogenic effect during invasion in the highly oxygenated environment of the host. Catalase and glutathione-dependent peroxidase activities are absent in *E. histolytica*, but *E. histolytica* contains a peroxiredoxin on the outer surface of the cell which reduces and detoxifies peroxides and peroxynitrites under oxidatively stressed conditions (11). This protein is reported to localize to the parasite host cell contact and can effectively counteract the free radicals generated by the host cell and facilitates invasion (13). Therefore, it could be predicted or possibly true that Eh29, a membrane-associated peroxiredoxin in nature, takes part in the removal of ROS formed under stressed conditions and helps in the survival of the parasite. To establish the involvement of Eh29 in survival and removal of ROS from the parasite, an antisense regulation technique to inhibit the expression of the eh29 gene was used.

In the tetracycline-induced eh29 antisense transfected trophozoites, the expression of the 29-kDa protein was downregulated by almost 50% (Fig. 2). This downregulation affected the survival rate of the parasite under oxidative stress conditions. In 3-h oxidatively stressed cells, the survival rate of the eh29 downregulated trophozoites was only 65% compared to 97.5% in normal trophozoites. ROS accumulation in the 29-kDa antisense transfected trophozoites showed a sevenfold increase under stress conditions compared to the control trophozoites, suggesting an involvement of the 29-kDa protein in removal of ROS, particularly H_2O_2. In the Eh29 downregulated trophozoites, cellular physiological activities were impaired and membrane integrity was lost under stressed conditions, but the cells were viable in the presence of catalase (Fig. 4). The above evidence confirmed that when the 29-kDa protein was downregulated in the trophozoites, the H_2O_2 level was high, as the
H$_2$O$_2$ formed could not be neutralized by the inhibited peroxidase. It is known that increased H$_2$O$_2$ levels alter membrane properties and disrupt membrane-bound proteins significantly, thereby killing the trophozoites. Further, almost all the eh29 downregulated trophozoites were propidium iodide positive, while no such observation was found in the normal trophozoites subjected to oxidative stress. Normal cells were Annexin V positive only after 6 h of oxidative stress, thus suggesting a possible necrotic death in the downregulated trophozoites. Therefore, the 29-kDa membrane-bound protein removes the toxic ROS during oxidative stress and is an essential factor for parasites survival.

Earlier reports have also shown the involvement of Eh29 in pathogenesis (15, 31). We have also made similar observations (unpublished data). To confirm the role of the 29-kDa protein in pathogenesis, cytopathic and cytotoxic effects on BHK1 cells were studied in Eh29 antisense and control trophozoites. The BHK monolayer destruction was only 20% by the 29-kDa-downregulated trophozoites compared to 75% by the normal HMI. The cytotoxic activity was also significantly lower with the 29-kDa-inhibited trophozoites compared to 75% by the normal parasites survival.

Therefore, the 29-kDa membrane-bound protein removes the effect on pathogenesis. Eukaryot. Cell

REFERENCES

