Aspergillus nidulans uvsB_{ATR} and scaA_{NBS1} Genes Show Genetic Interactions during Recovery from Replication Stress and DNA Damage

Marcia Regina von Zeska Kress Fagundes, † Camile P. Semighini, ‡ Iran Malavazi, † Marcela Savoldi, † Joel Fernandes de Lima, † Maria Helena de Souza Goldman, § Steven D. Harris, ‡ and Gustavo Henrique Goldman † *

Faculdade de Ciências Farmacêuticas de Ribeirão Preto and Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, † Universidade de São Paulo, São Paulo, Brazil, and Plant Science Initiative, University of Nebraska, N234 Beadle Center, Lincoln, Nebraska 68588-0660

Received 22 February 2005/Accepted 19 April 2005

The ATM/ATR kinases and the Mre11 (Mre11-Rad50-Nbs1) protein complex are central players in the cellular DNA damage response. Here we characterize possible interactions between *Aspergillus nidulans* uvsB_{ATR} and the Mre11 complex (scaA_{NBS1}). We demonstrate that there is an epistatic relationship between uvsB_{ATR}, the homolog of the ATR/MEC1 gene, and scaA_{NBS1}, the homolog of the NBS1/XRS2 gene, for both repair and checkpoint functions and that correct ScaA_{NBS1} expression during recovery from replication stress depends on uvsB_{ATR}. In addition, we also show that the formation of UvsC foci during recovery from replication stress is dependent on both uvsB_{ATR} and scaA_{NBS1} function. Furthermore, ScaA_{NBS1} is also dependent on uvsB_{ATR} for nuclear focus formation upon the induction of DNA double-strand breaks by phleomycin. Our results highlight the extensive genetic interactions between UvsB and the Mre11 complex that are required for S-phase progression and recovery from DNA damage.

The DNA damage response is a protective mechanism that ensures the maintenance of genome integrity during cellular reproduction. DNA damage takes several general forms, including single- and double-strand breaks (DSBs), base damage, and DNA-protein cross-links, which cause replication fork progression blockade and can generate secondary lesions such as DSBs. In complex genomes of higher vertebrates, DNA secondary structures such as hairpins and G4 tetraplexes that spontaneously form at palindromic or repeated sequences can give rise to DSBs as a consequence of the processing of the stalled replication forks (12, 56). DNA synthesis must be restored at sites where replication forks have been damaged or blocked to allow the establishment of a bona fide replication fork to conclude S phase and avoid DSB formation (53). If left unrepaired, DNA damage can result in cell cycle arrest, cell death, and if repaired incorrectly, the loss of genetic information or the accumulation of mutations that lead to cancer in multicellular organisms. DNA replication, gene transcription, DNA repair, and cell cycle checkpoints must all interlink to promote cell survival following DNA damage (38).

The two main signal transduction pathways that respond to DNA damage, namely, the ATM (mutated in ataxia telangiectasia [AT]) and ATR (ATM-Rad3-related; this pathway was recently linked to Seckel syndrome) pathways, are conserved across evolution (1, 46, 55, 74, 76). The ATM pathway responds to the presence of double-strand-breaks (DSBs). The ATR pathway also responds to DSBs, but more slowly than ATM. In addition, the ATR pathway can respond to agents that interfere with the function of replication forks, such as hydroxyurea (HU), UV light, and DNA-alkylating agents such as methyl methanesulfonate (MMS) (45, 47). The ATM/ATR kinases phosphorylate and activate proteins in the signal transduction pathways that ultimately interface with the Cdk/cyclin machinery (1). ATR and ATM may possess both overlapping and nonredundant roles in the regulation of the DNA damage response. For instance, the overexpression of ATR complements the radioresistant DNA synthesis phenotype of an AT cell line (9). In the yeast *Saccharomyces cerevisiae*, the homologues of *ATR/ATM, MEC1/TEL1*, have functionally redundant roles in both DNA damage repair and telomere length regulation (11). These kinases regulate the activation of two downstream protein kinases, Chk1 and Chk2 (57).

The Mre11 (Mre11-Rad50-Nbs1) protein complex has emerged as a central player in the human cellular DNA damage response, and recent observations suggest that these proteins are at least partially responsible for the linking of DNA damage detection to DNA repair and cell cycle checkpoint functions (51). In humans, the loss of the NBS1 gene is associated with the Nijmegen breakage syndrome, a rare autosomal recessive disorder that belongs to the group of inherited human chromosomal instability syndromes that includes Bloom’s syndrome, Fanconi’s anemia, and AT. All of these disorders are characterized by spontaneous chromosomal instability, immunodeficiency, and a predisposition to cancer, but they have distinct cytogenetic features and sensitivities to specific DNA-damaging agents (for a review, see references 16, 61, and 62).

* Corresponding author. Mailing address: Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil. Phone: 55-16-6024280/81. Fax: 55-16-6331092. E-mail: ggoldman@usp.br.
† Both authors contributed equally to this work.
The NBS1 gene product, nibrin/p95, is part of the Mre11/Rad50 nuclear foci that form at sites of DSBs (6). The Mre11 complex possesses manganese-dependent single-stranded DNA endonuclease and 3'-to-5' exonuclease activities (65). In humans and yeast, Mre11, Rad50, and Nbs1/Xrs2 assemble into large complexes. These proteins also appear to play a role in telomere maintenance. In addition, they are implicated in the cell’s checkpoint response to the presence of DSBs (14). During meiosis, these three proteins are required not only for the resection of DSBs but also to create meiotic DSBs (51). Studies of mammalian and yeast cells have established that the Mre11 complex controls the ATM/Tel1 signaling pathway (4, 13, 32, 56, 66). ATM activation correlates with autophosphorylation on Ser1981 (2), and this phosphorylation requires functions of the Mre11 complex (7, 67). It is possible that the Mre11 complex modulates the substrate recognition of ATM by a direct interaction (37). In addition, the Mre11 complex controls the accumulation of ATM at DSB lesions (36). Re- sults from this study, we examined possible interactions between A. nidulans uvsB\textsubscript{ATR}, the homolog of the ATR/MEC1 gene, and the Mre11 complex (using sca\textsubscript{ATR}, the homolog of the NBS1/XRS2 gene). Our observations suggest the existence of a complex epistatic relationship whereby both UvsB\textsubscript{ATR} and the Mre11 complex contribute to the repair of DSBs and the DNA replication stress response.

MATERIALS AND METHODS

Strains and media. The *A. nidulans* strains used for this study are described in Table 1. The media used were of two basic types, i.e., complete and minimal. The complete media comprised the following three variants: YAG (2% glucose, 0.5% yeast extract, 2% agar, trace elements), YUU (YAG supplemented with 1.2 g/liter [each] of uracil and uridine), and liquid YG or YG UU medium with the same composition (but without agar). The minimal media were a modified complete media comprised the following three variants: YAG (2% glucose, 0.5% yeast extract, 2% agar, trace elements), YUU (YAG supplemented with 1.2 g/liter [each] of uracil and uridine), and liquid YG or YG UU medium with the same composition (but without agar). The minimal media were a modified

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR5</td>
<td>pyrG89 wa3 pyroA4</td>
<td>FGSC A773</td>
</tr>
<tr>
<td>AML8</td>
<td>pyrG89 pabaA1 yqB2 ya2</td>
<td>30</td>
</tr>
<tr>
<td>AAH14</td>
<td>pyrG89 pabaA1 ya2 uvsB</td>
<td>30</td>
</tr>
<tr>
<td>T20</td>
<td>pyrG89 wa3 pyroA4 scaA::pyr4</td>
<td>5</td>
</tr>
<tr>
<td>GG11</td>
<td>pyrG89 wa3 pyroA4 scaA::pyr4</td>
<td>59</td>
</tr>
<tr>
<td>ASH270</td>
<td>pyrG89 pabaA1 ya2 uvsB10 sqa299-16 pyc299-16 pyroA4 scaA::pyr4</td>
<td>5</td>
</tr>
<tr>
<td>ASG17</td>
<td>wa1 xmlC14 uvsC::FLAG</td>
<td>23</td>
</tr>
<tr>
<td>GHG4</td>
<td>scaA1 uvsB10 uvsC::FLAG</td>
<td>This work</td>
</tr>
<tr>
<td>ACS2</td>
<td>pabaA1 ya2 uvsB110 uvsC::FLAG</td>
<td>This work</td>
</tr>
<tr>
<td>BAG56</td>
<td>pabaA1 ya2 uvsB10 a1cA::gfp::scaA</td>
<td>This work</td>
</tr>
<tr>
<td>UAG821</td>
<td>alcA::gfp::scaA</td>
<td>This work</td>
</tr>
</tbody>
</table>

TABLE 1. A. nidulans strains used for this study
FIG. 1. Growth phenotypes of the wild-type, ΔuvB^ATR, scaA::pyr4, and scaA::pyr4 ΔuvB^ATR strains. (A) Strains GR5 (wild type), T20 (scaA::pyr4), AAH14 (ΔuvB^ATR), and GG11 (scaA::pyr4 ΔuvB^ATR) were grown for 72 h at 37°C in YUU medium in the presence or absence of 4-NQO, MMS, HU, and CPT. (B) Viability curves for GR5 (wild type), T20 (scaA::pyr4), AAH14 (ΔuvB^ATR), and GG11 (scaA::pyr4 ΔuvB^ATR) hyphae grown on YUU containing different concentrations of CPT at 37°C. Growth was measured as the percent change in the radial growth rate compared to that on an untreated YUU control plate.
were aseptically transferred to fresh YG medium plus 20 mM HU for 6 h at 37°C.

Mycelia of UvsC::FLAG-expressing (ASG19 and ACS2) strains in a reciprocal shaker at 37°C for 16 h in liquid YG medium (plus uridine and uracil if necessary). Germinating conidiospores were exposed to UV light, the ANOVA followed, when significant, by the Newman-Keuls multiple comparison test, using Sigma Stat statistical software (Jandel Scientific). When germinating conidiospores were exposed to UV light, the ΔuvsB and ΔuvsB scaA::pyr4 strains were not significantly different from the scaA::pyr4 strain.

Protein assays and Western blot analysis. Protein assays were performed by initially growing conidia from the wild-type (GR5), AAH14 (ΔuvsB), and UvsC::FLAG-expressing (ASG19 and ACS2) strains in a reciprocal shaker at 37°C for 16 h in liquid YG medium (plus uridine and uracil if necessary). Mycelia were aseptically transferred to fresh YG medium plus 20 mM HU for 6 h at 37°C.

Protein was extracted at 4°C with extraction buffer (15 mM NaCl, 10% SDS-PAGE). The protein concentration was determined by a modified Bradford assay (Bio-Rad). The samples were prepared for 10% SDS-PAGE. After separation of the proteins, the gel was blotted onto a pure nitrocellulose membrane (0.2 μm). The membrane was probed with anti-ScaA or anti-NpkA antibodies.

TABLE 2. Mitosis assay results for A. nidulans wild-type and mutant strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>No. of germlings with no mitosis arrest in presence of HUa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 mM</td>
</tr>
<tr>
<td>GR5 (wild type)</td>
<td>63.0 ± 12.7</td>
</tr>
<tr>
<td>AAH14 (ΔuvsB)</td>
<td>61.5 ± 7.8</td>
</tr>
<tr>
<td>T20 (scaA::pyr4)</td>
<td>69.3 ± 2.1</td>
</tr>
<tr>
<td>GG11 (ΔuvsB scaA::pyr4)</td>
<td>71.3 ± 8.1</td>
</tr>
</tbody>
</table>

a Germlings that had two or more nuclei after the HU incubation were scored as germlings that did not have mitosis arrest. All results are the averages of determinations from three independent experiments, with 100 germlings being evaluated in each. The results are expressed as means ± standard deviations. Statistical differences were determined by one-way ANOVA followed, when significant by the Newman-Keuls multiple comparison test, using Sigma Stat statistical software (Jandel Scientific). P < 0.05 was considered statistically significant.

b Significantly different from all other treatments (P < 0.05).

TABLE 3. Viability assay results for A. nidulans wild-type and mutant strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>% of colonies in presence of HU relative to untreated controlsb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 mM</td>
</tr>
<tr>
<td>GR5 (wild type)</td>
<td>100.0 ± 0</td>
</tr>
<tr>
<td>AAH14 (ΔuvsB)</td>
<td>74.6 ± 12.8</td>
</tr>
<tr>
<td>T20 (scaA::pyr4)</td>
<td>78.2 ± 8.1</td>
</tr>
<tr>
<td>GG11 (ΔuvsB scaA::pyr4)</td>
<td>84.8 ± 4.6</td>
</tr>
</tbody>
</table>

b Viability was determined as the percentage of colonies on HU-treated plates compared to those on untreated control plates. All results are averages of determinations from three independent experiments. The data are means ± standard deviations. Statistical differences were determined by one-way ANOVA followed, when significant, by the Newman-Keuls multiple comparison test, using Sigma Stat statistical software (Jandel Scientific). P < 0.05 was considered statistically significant.

b Significantly different from all other treatments (P < 0.05).
NpkA polyclonal immunoglobulin G (IgG) antibodies at a 1:100 dilution in TBS/T buffer for 1 h at room temperature. For UvsC::FLAG experiments, a 1:1,000 dilution of either the monoclonal anti-FLAG M2 monoclonal antibody F-3165 (Sigma, St. Louis, Mo.), the anti-alpha-tubulin clone DM 1A (Sigma, St. Louis, Mo.), or the IgG fraction of goat anti-rabbit muscle aldolase (Rockland, Gilbertsville, Pa.) was used. The membrane was washed four times for 5 min each with TBS/T buffer and then incubated with a 1:7,000 dilution of anti-rabbit IgG-peroxidase for 1 h. After being washed, the blot was developed by use of the SuperSignal ULTRA chemiluminescence detection system (Pierce) and recorded by the use of Hyperfilm ECL (Amersham Biosciences).
Replication checkpoint response. For mitosis assays, conidiospores were inculated onto coverslips in YG+UU medium with 0, 6, or 100 mM HU. After 5 to 7 h of incubation at 30°C, coverslips with adherent germlings were transferred to a fixative solution (3.7% formaldehyde, 50 mM sodium phosphate buffer, pH 7.0, 0.2% Triton X-100) for 30 min at room temperature. They were then briefly rinsed with phosphate-buffered saline (140 mM NaCl, 2 mM KCl, 10 mM NaHPO₄, 1.8 mM KH₂PO₄, pH 7.4) and incubated for 5 min in a solution with 100 ng/ml of DAPI (4′,6-diamidino-2-phenylindole; Sigma Chemical Co.) (27) and 100 ng/ml of calcofluor (fluorescence brightener; Sigma Chemical Co.). After incubation with the dyes, they were washed with phosphate-buffered saline for 5 min at room temperature and then rinsed in distilled water and mounted on the slides. The material was photographed by use of a Zeiss epifluorescence microscope. The number of nuclei was assessed by DAPI staining. Germlings that had two or more nuclei after the HU incubation were scored as having a nonfunctional checkpoint response.

For viability assays, 1.0 × 10⁹ conidia were inculated into 1.0 ml of YG+UU medium with 0, 6, or 100 mM HU and then incubated in a reciprocating shaker (250 rpm) at 30°C for 6 h. The conidiospores were washed with distilled water, conveniently diluted, plated on YUU, and incubated at 30°C for 48 h. Viability was determined as the percentage of colonies on plates with drug-treated controls.

Real-time PCRs. All PCRs and reverse transcription-PCRs (RT-PCRs) were performed by using an ABI Prism 7700 sequence detection system (Perkin-Elmer Applied Biosystems). Taq-Man EZ RT-PCR kits (Applied Biosystems) were used for RT-PCRs. The thermal cycling conditions comprised an initial step at 50°C for 2 min, followed by 30 min at 60°C for reverse transcription, 5 min at 95°C, and 40 cycles of 94°C for 20 s and 60°C for 1 min. A TaqMan Universal PCR master mix kit was used for PCRs. The thermal cycling conditions comprised an initial step at 95°C for 2 min, followed by 10 min at 95°C and 40 cycles of 95°C for 15 s and 60°C for 1 min. The reactions and calculations were performed according to the method of Semighini et al. (59). The following primers and Lux fluorescent probes (Invitrogen) were used for this work: for the method of Semighini et al. (59). The following primers and Lux fluorescent probes (Invitrogen) were used for this work: for the method of Semighini et al. (59). The following primers and Lux fluorescent probes (Invitrogen) were used for this work: for the method of Semighini et al. (59).

Construction of ΔuvsBΔstr strain. To replace the uvsBΔstr gene with the argB marker, we constructed the plasmid pSA1 (30). First, the plasmid pASUB10, which contains the entire uvsB open reading frame, was digested to completion with BamHI. The resulting 6.5-kb BamHI fragment, which contained the vector backbone plus flanking uvsB sequences, was then ligated to a 1.8-kb BamHI fragment containing A. nidulans arfg (from pSAL-ArgB). pPS1 was transformed into strain AML8. ArgB fragment containing the entire backbone plus flanking open reading frame, was digested to completion with BamHI and ligated to the previously BamHI-digested and calf intestinal alkaline phosphatase-dephosphorylated vector pMBC17apx (Amp+ pyr4 alca::gfp). This vector construction, pMAGS75, was introduced into the wild-type and AAH14 strains. Germlings of these strains were grown in SC plus 50 mM HU for 2 days in the presence or absence of 10 μg/ml of the radiomimetic drug phleomycin (PHLEO) (Invivogen) for 1 h at 30°C. After the treatment, the germlings were transferred to a fixative GFP solution [50 mM piperazine-N,N’-bis(2-ethanesulfonic acid) (PIPES), pH 6.7, 25 mM EGTA, 5% dimethyl sulfoxide, and 10% formaldehyde] for 15 min at room temperature. The germlings were washed three times with PEM (50 mM PIPES, pH 6.7, 25 mM EGTA, 5 mM MgSO₄) and then stained with Hoechst. Slides were analyzed by laser scanning confocal microscopy (UNL Microscopy Core Facility) using the following laser lines: 405 nm for Hoechst 33258 and 488 nm for GFP. Images were subsequently processed with Adobe Photoshop 6.0.

ScaANBS1 and UvsBΔstr display an epistatic interaction for the response to CPT-induced DNA damage. As a first step to look for possible genetic interactions between uvsBΔstr and scaANBS1, the double mutants and the corresponding parental strains were grown in the presence of different DNA-damaging agents. As shown in Fig. 1, the growth of the double mutant was no slower than that of either of the parental strains in the presence of CPT, suggesting that these two genes function in the same pathway to repair and/or process DNA damage caused by this anti-topoisomerase I drug. Interestingly, the scaA::pyr4 mutation appeared to partially suppress the sensitivity of the ΔuvsBΔstr mutant to 4-NQO. We previously reported that another mutation that causes defects in recovery from DNA damage, musN227, which affects the A. nidulans MusNrec homologue, also partially suppresses the DNA damage sensitivity of uvsBΔstr mutants (30, 31).

Since the ATR pathway can also respond to UV light, which interferes with the function of replication forks (45, 47), we checked the UV sensitivities of nondividing (quiescent) and dividing (germinating) scaANBS1::pyr4 ΔuvsBΔstr cells to UV irradiation. When UV irradiation was applied to quiescent conidia, the scaANBS1::pyr4 ΔuvsBΔstr double mutant strain was as sensitive to UV irradiation as the single mutant ΔuvsBΔstr strain (Fig. 2A). In contrast, when germinating conidia were exposed to UV light, the scaANBS1::pyr4 ΔuvsBΔstr double mutant strain was as sensitive to UV irradiation as the single mutant ΔuvsBΔstr strain (Fig. 2B).

For the latter experiment, conidiospores were first allowed to germinate for 4.5 h before UV irradiation was applied, by which time they had entered the first cell cycle. These results show that scaANBS1 and uvsBΔstr display epistatic interactions for the detection and/or repair of UV-induced DNA damage in germinating conidiospores.

UvsBΔstr regulates ScaANBS1 expression during recovery from replication stress. HU is an inhibitor of ribonucleoside diphosphate reductase, the rate-limiting enzyme in deoxyribonucleoside triphosphate (dNTP) biosynthesis. The depletion of dNTPs activates the DNA replication checkpoint, which slows the progression through S phase (15). Furthermore, the initiation of DNA replication in the presence of high levels of HU causes DSBs (41). HU is an effective inhibitor of DNA synthesis in A. nidulans (3). Since uvsBΔstr is involved in the DNA replication checkpoint response (18), we examined the ability of the ΔuvsBΔstr scaA::pyr4 double mutant to sur-
vive a transient period of growth in the presence of HU. Two different assays were used to verify if the DNA replication checkpoint response was impaired in the mutant strains (18). The first assay (i.e., the mitosis assay) monitored mitosis in mutant and wild-type strains incubated in 6 or 100 mM HU for 5 to 7 h. The number of nuclei was assessed by DAPI staining, and if germlings had two or more nuclei after the HU incubation, they were scored as defective in mitosis arrest (Table 2). The second assay (i.e., the viability assay) assessed the germling viability after incubation for 6 h in the presence or absence of 6 or 100 mM HU (Table 3). Both assays measure the state of the replication checkpoint response.

We previously reported the presence of an intact DNA replication checkpoint in the scaA NBS1 inactivation strain (59). However, these results were based on a comparison to the wild-type strain UI224, which has an argB2 mutation. Recently, we observed several interactions between the argB2 mutant and different DNA-damaging agents (data not shown). Kafer (33) also reported that amino acid-requiring \textit{A. nidulans} mutants were hypersensitive to MMS when assayed by survival and colony formation. Thus, to clarify these results, we repeated the experiments using the original parental wild-type strain UI224 as a control. Interestingly, the scaA NBS1 inactivation strain did not have mitosis arrest at 6 mM and 100 mM HU (Table 2), implying that the argB2 mutation suppresses the scaA::pyr4 checkpoint defect. Moreover, as previously reported (18), the ΔuvbB mutant also displayed defects at both concentrations. Although the scaA::pyr4 ΔuvbB double mutant also did not show mitosis arrest at both concentrations, no obvious genetic interaction was noted (Table 2). As previously showed by Fagundes et al. (18), viability was impaired in the ΔuvbB AATR strain at both 6 and 100 mM HU (Table 3). The ΔuvbB scaA::pyr4 (GG11) double mutant showed a decrease in viability at 6 mM and 100 mM HU that was comparable to that of the ΔuvbB AATR (AAH14) and scaA::pyr4 (T20) strains at 100 mM HU. These results suggest that there is epistasis between uvbB AATR and scaA NBS1 for germling viability during the replication checkpoint response.

As a preliminary step to characterize the epistasis observed for the DNA replication checkpoint between scaA NBS1 and uvbB AATR, we attempted to determine if ScaA NBS1 expression was dependent on UvsB AATR following release from HU-induced replication stress (48). To this end, we raised polyclonal antibodies against ScaA. As shown in Fig. 3A, a single band of approximately 100 kDa was recognized by the antibodies; this band was increased at least 10 times after growth in the presence of CPT (Fig. 3A). As expected, the scaA NBS1 deletion mutant had no signal (Fig. 3A, lane 3). To examine ScaA expression upon HU stress and recovery, we incubated wild-type germlings in the presence of 20 mM HU for 6 h, aseptically washed them with sterile water, and allowed them to grow for 120 min. Every 10 min after HU release, samples were taken for the extraction of RNAs and proteins. After HU release, all germlings are still blocked in S phase, and thus, cell division synchrony is maintained (48). We performed real-time RT-PCRs specific for the \textit{nima} \textit{A} gene. This gene is preferentially expressed in the \textit{G}_2 phase and at the \textit{G}_2-M transition (48). The expression of the \textit{nima} \textit{A} gene was induced to 50% after 60 min incubation with HU (data not shown). The same HU block and release experiment was performed again, but with ΔuvbB germlings (Fig. 3E). Interestingly, in the ΔuvbB background, ScaA was expressed at higher levels throughout the time course. In addition, there were several bands of different molecular weights recognized by the anti-ScaA antibody, suggesting that ScaA could be partially degraded and/or subject to posttranslational modification. The incubation of these protein extracts with \textit{λ} protein phosphatase (dual-specificity serine/threonine/tyrosine phosphatase) did not eliminate the additional bands (data not shown), indicating that phosphorylation is not involved in this phenomenon. Taken together, these results suggest that ScaA expression is increased during recovery from replication stress and that the absence of UvsB leads to an increased expression of ScaA throughout the different phases of the cell cycle though either direct or indirect means.

Formation of UvsCCRAD51 nuclear foci during recovery from replication stress requires scaANBS1 and uvbBAATR. In \textit{A. nidulans}, the expression and localization of UvsCCRAD51 is regulated by DNA damage (25, 69). Rad51 homologues promote the initial steps of homologous recombination by binding the free ends of the DNA double strands (for a review, see reference 45). In yeast cells, Rad51 forms irradiation-induced subnuclear foci (8, 22). UvsCCRAD51 also localizes to similar structures, as determined by using a functional UvsC::FLAG fusion protein expressed under the control of \textit{uvbC} promoter sequences (25). We determined whether the nuclear localization of UvsCCRAD51 during recovery from HU replication stress could be affected by scaA NBS1 and uvbB AATR inactivation. Thus, we constructed UvsC::FLAG strains in the wild-type, \textit{uvbB110}, and \textit{scaA1} backgrounds, grew them in the presence of HU, washed the germlings from the drug, and immunolocalized UvsCCRAD51. As shown in Fig. 4A and D, UvsCCRAD51 nuclear foci were observed following treatment with HU and during the recovery period. The decrease in foci seen at 60 min correlated with a dramatic decrease in UvsCCRAD51 expression (Fig. 5B). Because \textit{nima} \textit{A} gene expression peaked at the same time (Fig. 5A), these cells were likely in \textit{G}_2 phase. Thus, the second wave of UvsCCRAD51 focus formation observed at 90 min presumably reflected a population of cells entering the next S phase. When the same experiment was carried out with uvbB110 and \textit{scaA1} mutants, UvsCCRAD51 foci were dramatically reduced to about 80 to 90% of the average levels observed in the wild type. This occurred even through UvsCCRAD51 was abundantly expressed during the recovery period in both mutants (Fig. 5C and data not shown). These results demonstrate that UvsCCRAD51 focus formation during recovery from replication stress is dependent on scaA NBS1 and uvbB AATR.

ScaA NBS1 localizes to nuclear foci in a UvsB AATR-dependent manner. To determine if ScaA NBS1 localizes to nuclei in a DNA damage-dependent manner, we constructed ScaA::Gfp and alcAp::Gfp::ScaA strains. In a first set of experiments, we could not observe fluorescence when a wild-type strain expressing...
ScaA::Gfp driven by its own promoter was challenged with 10 μg/ml of PHLEO (data not shown). As previously observed by Bruschi et al. (5), this could be due to the weak levels of expression of this gene. Thus, we decided to boost the ScaA expression levels by fusing the scaA open reading frame to a GFP construct regulated by the A. nidulans alcA (alcohol dehydrogenase) promoter (19, 72). The alcA promoter is induced to high levels by glycerol, ethanol, and L-threonine and is repressed by glucose (20). This construction (alcAp::Gfp::ScaA) was transformed into the wild-type and AAH14 (ΔuvsB) strains. Several transformants were obtained in which the plasmid had integrated ectopically at different sites and produced large amounts of Gfp::ScaA when induced with ethanol (Fig. 6A). Figure 6B shows wild-type hyphae that were grown in the

FIG. 5. UvsC::FLAG expression is absent from G2 phase. (A) Real-time RT-PCR specific for the A. nidulans nimA gene. Conidia from the wild-type (ASG19) or uvsB110 (ACS2) strain were grown in a reciprocal shaker at 37°C for 16 h in YG+UU medium. Mycelia were aseptically transferred to fresh YG+UU medium plus 20 mM HU for 6 h (at 37°C). A control without HU was also made (0'). The mycelia were extensively washed with sterile YG medium and then transferred to fresh YG+UU medium at 37°C in a reciprocal shaker. Samples were collected every 10 min for 120 min, and RNAs and proteins were extracted. Western blots were performed with total protein extracts from the A. nidulans wild-type (ASG19) (B) and uvsB110 (ACS2) (C) strains (lanes 1 and 2, time zero before HU addition and after HU removal, respectively; lanes 3 to 14, 10 to 120 min). The protein samples were obtained from mycelia grown as described for panel A. The membranes were separately labeled with anti-FLAG, anti-tubulin, and anti-aldolase antibodies.

FIG. 4. Immunolocalization of UvsC::FLAG in germlings during S-phase recovery of the wild-type (ASG17) (A), scaA1 (GHG4) (B), and uvsB110 (ACS2) (C) strains. Mycelia of the ASG17, GHG4, and ACS2 strains were grown on coverslips in YG medium for 12 h. The coverslips were treated with 20 mM HU for 6 h, washed three times with prewarmed YG medium, and grown for 0, 30, 60, or 120 min after HU release. The adherent germlings were fixed, treated with an anti-FLAG antibody, and stained with Hoechst. The samples were analyzed by immunofluorescence microscopy, and distinct UvsC-FLAG subnuclear foci were counted (D). Images were obtained by laser scanning confocal microscopy. Left panels, nuclei stained by Hoechst; middle panels, UvsC-FLAG subnuclear foci; right panels, merged images.
A.

B. UAGS21 (alcA::gfp::scaA)

<table>
<thead>
<tr>
<th></th>
<th>Hoechst</th>
<th>GFP</th>
<th>Merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHLEO 10 µg/ml</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. BAGS6 (ΔuvsB; alcA::gfp::scaA)

<table>
<thead>
<tr>
<th></th>
<th>Hoechst</th>
<th>GFP</th>
<th>Merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHLEO 10 µg/ml</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B kinase function is necessary for both the G2- and S-phase via tyrosine phosphorylation of NimXCdc2. If DNA replication responds to the rate of DNA replication and inhibits mitosis by the addition of HU to a level that does not cause arrest. It decided to investigate the DNA replication checkpoint re-

topoisomerase I poisons leads to S-phase slowing (44, 60), we dependent of ATM function. Since prolonged exposure to wild type (Fig. 6A and B). We observed the same results for two independent transfectants obtained for each treatment (data not shown). These results show that ScaAATR localizes to nuclei in response to DNA damage (i.e., DSBs) in a manner that requires ubsBATR function. This may account, in part, for the epistatic interaction observed between scaANBS1 and ubs-

DISCUSSION

We have characterized genetic interactions between A. nidul-

lans ubsBATR and scaANBS1 during the responses to replication stress and DNA damage. The UvsBATR protein is the homolog of ATR/MEC1, whereas we have characterized another phosphoinositide-3-kinase-related protein family (PIKK) that corresponds to the A. nidulans ATM/TEL1 homolog (I. Malavazi and G. H. Goldman, unpublished results). The scaA::gfp

ΔubsBATR double mutant was as sensitive to CPT as the corresponding single mutants, suggesting that these two genes are epistatic for the signaling and/or repairing of DNA damage caused by CPT. Cliby et al. (10) have demonstrated that ATR kinase function is necessary for both the G2- and S-phase arrests induced by topoisomerase I poisons and that these cellular responses to topoisomerase poisons appear to be independent of ATM function. Since prolonged exposure to topoisomerase I poisons leads to S-phase slowing (44, 60), we decided to investigate the DNA replication checkpoint re-

ponse in these mutants. There are at least two S-phase checkpoint mechanisms controlling mitosis in A. nidulans (75). The first S-phase checkpoint is activated when replication is slowed by the addition of HU to a level that does not cause arrest. It responds to the rate of DNA replication and inhibits mitosis via tyrosine phosphorylation of NimX Cdc2. If DNA replication is arrested, a second checkpoint involves BimEAPC1 (the hom-

ology of the anaphase-promoting complex subunit APC1). This second S-phase checkpoint occurs when DNA replication is completely inhibited by higher levels of HU than that which stimulates the prolonged DNA replication checkpoint. This information was obtained by characterizing double mutants possessing nimX Cdc2AF (a mutated version in which Thr14 is converted to an Ala [A] and Tyr15 is converted to a Phe [F] residue) and the temperature-sensitive mutation bimE7 (49). Either the Cdc2AF or bimE7 mutation alone has a limited capacity to promote mitosis when S phase is arrested, but in combination these two defects allow cells to enter a lethal premature mitosis before the completion of DNA replication. Recently, we demonstrated that the A. nidulans ubsBATR gene is involved in the DNA replication checkpoint responses and that a deletion mutant of npk4, a p34Cdc2-related gene, can suppress its S-phase checkpoint deficiency (18).

scaANBS1 and ubsBATR mutants were epistatic regardless of the HU concentration, suggesting that these genes function in a common pathway that is probably necessary for progression after and/or recovery from replication stress. HU stalls replication forks by depleting the dNTP pool. Another type of replication block might be associated with DNA breaks generated during replication. In theory, DSBs could arise if replication forks pass through nicked DNA or certain repair or recombination intermediates (47). The S-phase checkpoints respond to replication interference by slowing down DNA replication to allow the damage to be repaired before polymerases encounter additional DNA damage (47). Deletion of the ATR orthologs MEC1 and RAD3 in budding (S. cerevisiae) and fission (Schizosaccharomyces pombe) yeasts, respectively, elimi-

nates the DNA replication checkpoint (45). Using a Cre/lox conditional system to study the effect of ATR loss, Brown and Baltimore (4) showed that mammalian ATR is an important regulator of checkpoint signaling pathways that phosphorylates Cdc2 in response to ionizing radiation and stalled replication. D’Amours and Jackson (13) demonstrated that the Mre11 complex is required for Mecl/Rad3-dependent S-phase checkpoint activation. The Mre11 complex could be recruited to DSBs accumulated at stalled replication forks by the ATR-

dependent phosphorylation of histone H2AX during S phase (64). In fact, ATR kinase-deficient cells cannot form both γ-H2AX and Mre11 complex foci (21, 71). Similarly, we have found that ubsBATR is required for the formation of ScaA foci upon induction of DSBs by PHLEO. This raises the possibility that ubsBATR plays an important role in the A. nidulans re-

sponse to DSBs. Curiously, Stiff et al. (63) observed that while replication protein A (RPA) is recruited normally to damage sites in NBS cells, the nuclear retention of ATR is markedly decreased after replication stalling, suggesting that Nbs1 functions to recruit or retain ATR.

The S-phase response of wild-type cells to UV irradiation, i.e., the reduction of the rate of DNA synthesis due to the inhibition of the rate of chain elongation and replication initiation, can be divided into passive and active inhibition. Passive inhibition of DNA replication is attributed to the physical obstruction of the DNA replication apparatus at sites of DNA damage. Active inhibition is a trans effect mediated through checkpoint signals that emanate from sites of DNA damage and ultimately inhibit the initiation of distant replication forks (58). This S-phase checkpoint response imposes transient delays in

FIG. 6. Gfp::ScaA focus formation is dependent on ubsBATR in response to DSBs caused by PHLEO. (A) Western blot of total protein extracts from A. nidulans wild-type (UAGS21) and ΔubsB (BAGS6) strains. Conidia from the wild-type (UAGS21) or ΔubsB (BAGS6) strain were grown in a reciprocal shaker at 37°C for 16 h in MM. Mycelia were aseptically transferred to fresh MM or MM plus 50 mM ethanol for 1 h (at 37°C). Equal amounts of total protein (10 μg) were run in a 10% SDS-PAGE gel and then transferred to a nitrocellulose membrane. The membrane was labeled with the anti-ScaA antibody. Germlings of the UAGS21 (wild-type alcA::gfp::scaA) (B) and BAGS6 (∆ubsB alcA::gfp::scaA) (C) strains were grown in the presence of MC plus 50 mM ethanol in the presence or absence of 10 μg/ml PHLEO for 1 h at 30°C. After the treatment, the germlings were fixed, washed, and stained with Hoechst. Samples were analyzed by laser scanning confocal microscopy, and Z stacks of 1-μm sections are shown. Bars, 10 μm.
S-phase progression and provides more time for DNA repair to remove lesions from unreplicated chromatin (29). As previously reported for the uvsB mutant (18, 34), quiescent and germinating conidiospores were more sensitive to UV light than were those of the corresponding wild-type strain. ScaA^{NBS1} and UvsB^{ATR} are epistatic for the response to UV irradiation in germinating conidiospores. Although ATR seems to be required for checkpoint responses to replication blocks caused by UV-induced DNA damage (10, 29, 73), the checkpoint pathway that mediates the inhibition of replication initiation following UV-induced DNA damage is less clear. UV irradiation causes damage to single-stranded DNA, primarily by generating thymine dimers, which are repaired by nucleotide excision mechanisms that do not require a homologous chromatin and therefore should be repairable in G_i (39). S. pombe cells elicit an S-phase checkpoint when they are UV irradiated during G_i phase (54), while in S. cerevisiae, a checkpoint dependent on Mec1p delays progression through S phase in response to UV irradiation (50).

Several studies have established that the Mre11 complex regulates the activation of the Tel1 signaling pathway (13, 35, 52, 66). When DNA is damaged by UV or chemicals that make bulky base lesions, the main PIKK family damage sensor is the ATR protein (1). Mec1 physically interacts with Ddc2, a protein related to the mammalian ATR-interacting protein ATRIP (45, 57). ATR-ATRIP binds to chromatin and can bind directly to UV-induced lesions or RPA-coated single-stranded DNA generated from the repair or replication of these lesions and then become activated (57). As for the ATM-initiated checkpoint, ATR-initiated signaling also results in the phosphorylation of BRCA1, NBS1, and other targets, promoting the recovery of damaged replication forks and thereby coordinating the inhibition of replication initiation with the recovery of active replication forks by homologous recombination and related processes (57). We have shown that ScaA expression is increased during recovery from replication stress, and its nuclear localization appears to be promoted by UvsB^{ATR}. In contrast, Nakada et al. (43) demonstrated that the Mre11 complex controls the Mec1 signaling pathway. They showed that the Mre11 complex collaborates with Exo1 to produce long 3′ single-stranded DNA tails at DSB ends and to promote the Mec1 association with DSBs. The Mre11 complex and Exo1 play overlapping roles in activation in both DSB- and UV-induced checkpoints. The Mre11 complex and Exo1 are also involved in checkpoint responses to stalled DNA replication. However, as emphasized by Uziel et al. (67), the sequence of events at the early stage of the DNA damage response may not necessarily be explained by a simple hierarchy related to the position of each protein in the damage signaling cascade. Although the Mre11 complex regulates the activation of the Tel1 signaling pathway, both the Nbs1 and Mre11 proteins were shown to be phosphorylated in an ATM-dependent manner in response to DSBs (45).

We have shown that ScaA^{NBS1} and UvsB^{ATR} promote the formation of UvsC^{Rad51} nuclear foci during the recovery from replication stress. UvsC expression seems to be cell cycle regulated since UvsC is not present in G_i phase in the wild-type background. Intriguingly, the remarkable loss of UvsC from the G_i phase does not occur in the uvsB110 mutant, raising the attractive possibility that UvsB directly or indirectly regulates the cell cycle-dependent UvsC expression. In S. cerevisiae, Rad51 forms subnuclear foci in mitotic cells that have suffered DNA damage (8, 22). These foci are thought to represent sites of ongoing recombination, and consistent with in vitro observations, their formation requires RPA and Rad52 (42, 68, 70). Lisby et al. (40) have shown that only a subset of the proteins that are recruited to DSBs are also recruited to HU-stalled replication forks. Interestingly, these authors found that when HU induces replication fork collapse, Rad52 can still be recruited to nuclear foci even in the absence of Mec1 function. Our contrasting observation that Rad51 recruitment requires ATR function may reflect differences in the ways that yeast and filamentous fungi cope with DNA damage at HU-stalled replication forks.

ACKNOWLEDGMENTS

This research was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. We thank Vladimir Efimov for providing the plasmid pMCB17apx, Terri Fangman and Joe Zhao (Microscopy Core, University of Nebraska Center for Biotechnology) for their invaluable assistance with confocal microscopy. Amy Hoffmann for providing the uvsB deletion mutant, and Everaldo dos Reis Marques for helping with the real-time RT-PCR experiments.

REFERENCES

