Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Archive
  • About the Journal
    • About EC
    • For Librarians
    • For Advertisers
    • FAQ
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Eukaryotic Cell
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Archive
  • About the Journal
    • About EC
    • For Librarians
    • For Advertisers
    • FAQ
Articles

Control of Ammonium Permease Expression and Filamentous Growth by the GATA Transcription Factors GLN3 and GAT1 in Candida albicans

Neelam Dabas, Joachim Morschhäuser
Neelam Dabas
Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joachim Morschhäuser
Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: joachim.morschhaeuser@mail.uni-wuerzburg.de
DOI: 10.1128/EC.00307-06
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • FIG. 1.
    • Open in new tab
    • Download powerpoint
    FIG. 1.

    MEP2 promoter analysis. The structure of the insert of plasmid pMEP2G6, which contains a GFP-tagged MEP2 gene under the control of the wild-type MEP2 promoter, is shown on top. The MEP2 and GFP coding regions are represented by the white box and the gray arrow, respectively, the transcription termination sequence of the ACT1 gene (TACT1) by the filled circle, and the URA3 selection marker by the hatched arrow. MEP2 upstream and downstream sequences are represented by the solid lines, and the MEP2 promoter (PMEP2) is symbolized by the bent arrow. Relevant restriction sites are shown. The polymorphic EcoRI site, which is present only in the MEP2-1 allele, is highlighted in italics. Enlarged representations of the MEP2 regulatory region with the introduced deletions and mutations are shown below, and the names of the corresponding plasmids are indicated to the left. The extents of MEP2 promoter sequences contained in the various plasmids are given. Internal deletions are indicated by the dashed lines. The locations of GATAA sequences within 1 kb upstream of the MEP2 start codon are indicated by the short black bars in the wild-type promoter. The mutations of the GATAA sequences centered at positions −266 and −208 are marked by an X. The phenotypes conferred by the various constructs upon integration into mep1Δ mep2Δ double mutants are shown to the right. Fluorescence of the cells was observed after 6 h of growth at 30°C in liquid SLAD medium. The fluorescence micrographs show representative cells, and the mean levels of fluorescence of the two independently constructed reporter strains (± standard deviations) as measured by flow cytometry are given. The percentages in parentheses are with respect to the fluorescence of the wild-type MEP2 promoter, which was set to 100%. Growth of the strains at limiting ammonium concentrations was as follows: +, wild-type growth; (+), weak growth; −, no growth (see also Fig. 2A).

  • FIG. 2.
    • Open in new tab
    • Download powerpoint
    FIG. 2.

    (A) Growth of mep1Δ mep2Δ double mutants expressing a GFP-tagged MEP2 gene from the wild-type MEP2 promoter and derivatives containing the indicated deletions or mutations. The strains were grown for 4 days at 30°C on SD plates containing 1 mM ammonium. The following strains were used: MEP12M6A and -B (negative [neg.] control), MEP12MG6A and -B (positive [pos.] control), MEP12MG6ΔP1A and -B (ΔP1), MEP12MG6ΔP2A and -B (ΔP2), MEP12MG6ΔP3A and -B (ΔP3), MEP12MG6ΔP4A and -B (ΔP4), MEP12MG6ΔP5A and -B (ΔP5), MEP12MG6ΔP6A and -B (ΔP6), MEP12MG6ΔP7A and -B (ΔP7), MEP12MG6MP1A and -B (MP1), MEP12MG6MP2A and -B (MP2), and MEP12MG6MP3A and -B (MP3). The two independently constructed reporter strains behaved identically, and only one of them is shown in each case. (B) Filamentation of mep2Δ mutants expressing MEP2 from the wild-type MEP2 promoter and derivatives containing the indicated deletions or mutations. The strains were grown for 6 days at 37°C on SLAD plates, and individual representative colonies were photographed. The following strains were used: MEP2MK13A and -B (pos. control), MEP2MK13ΔP5A and -B (ΔP5), MEP2MK13ΔP6A and -B (ΔP6), MEP2MK13MP1A and -B (MP1), MEP2MK13MP2A and -B (MP2), and MEP2MK13MP3A and -B (MP3). Independently constructed strains behaved identically, and only one of them is shown in each case.

  • FIG. 3.
    • Open in new tab
    • Download powerpoint
    FIG. 3.

    Construction of gln3Δ mutants and complemented strains. (A) Structure of the deletion cassette from plasmid pGLN3M2 (top), which was used to delete the GLN3 open reading frame, and genomic structure of the GLN3 locus in strain SC5314 (bottom). The GLN3 coding region is represented by the white arrow and the upstream and downstream regions by the solid lines. Details of the SAT1 flipper (gray rectangle bordered by FRT sites [black arrows]) have been presented elsewhere (22). The 34-bp FRT sites are not drawn to scale. The probes used for Southern hybridization analysis of the mutants are indicated by the black bars. (B) Structure of the DNA fragment from pGLN3K1 (top), which was used for reintegration of an intact GLN3 copy into one of the disrupted GLN3 loci in the gln3Δ single and gln3Δ gat1Δ double mutants (bottom). Only relevant restriction sites are given in panels A and B, as follows: A, ApaI; B, BamHI; Bg, BglII; C, ClaI; ScI, SacI; ScII, SacII; Sl, SalI; and Xh, XhoI. Sites shown in parentheses were destroyed by the cloning procedure. The ClaI site marked in italics is present only in the GLN3-1 allele. (C) Southern hybridization of ClaI-digested genomic DNA of the wild-type strain SC5314 and gln3Δ mutants and complemented strains with the GLN3-specific probe 1. The sizes of the hybridizing fragments (in kb) are given on the left side of the blot, and their identities are indicated on the right. Insertion of the SAT1 flipper into either of the two GLN3 alleles of the parental strain SC5314 (lane 1) and subsequent FLP-mediated excision of the cassette produced the heterozygous mutants GLN3M2A and GLN3M2B (lanes 2 and 3). Insertion of the SAT1 flipper into the remaining wild-type GLN3 alleles, followed by recycling of the SAT1 flipper cassette, gave rise to the homozygous gln3Δ mutants GLN3M4A and GLN3M4B (lanes 4 and 5). An intact GLN3 copy was reintroduced into the gln3Δ mutants with the help of the SAT1 flipper, which was subsequently excised again to produce the complemented strains GLN3MK2A and GLN3MK2B (lanes 6 and 7).

  • FIG. 4.
    • Open in new tab
    • Download powerpoint
    FIG. 4.

    GLN3 and GAT1 control ammonium permease expression in C. albicans. (A and B) Expression of GFP-tagged Mep2p (A) and Mep1p (B) in the wild type, gln3Δ and gat1Δ single mutants, and gln3Δ gat1Δ double mutants in liquid media containing limiting concentrations (100 μM) of the indicated nitrogen sources. Overnight cultures of the reporter strains in SD-Pro medium were diluted 50-fold in the test media and grown for 6 h at 30°C. The fluorescence of the cells was measured by flow cytometry. The first columns show the results obtained with the A series, and the second columns show the results obtained with the B series of the reporter strains (see Table 1). Note that the scales of the y axis are different for Mep2p-GFP and Mep1p-GFP. (C) Detection of MEP2 mRNA by Northern hybridization with a MEP2-specific probe. Overnight cultures of the wild-type strain SC5314 (lane 1), the gln3Δ mutants GLN3M4A (lane 2) and GLN3M4B (lane 5), the gat1Δ mutants GAT1M4A (lane 3) and GAT1M4B (lane 6), and the gln3Δ gat1Δ double mutants Δgln3GAT1M4A (lane 4) and Δgln3GAT1M4B (lane 7) in SD-Pro medium were diluted 50-fold in liquid SLAD medium, and RNA was isolated after 6 h of growth at 30°C. The MEP2 transcript is absent from the gln3Δ gat1Δ double mutants; the faint band of slightly higher molecular weight than that of MEP2 seen in these and all other strains represents a cross-hybridizing transcript.

  • FIG. 5.
    • Open in new tab
    • Download powerpoint
    FIG. 5.

    (A) GLN3 is required for the normal filamentous growth of C. albicans in response to nitrogen limitation. YPD precultures of the strains were appropriately diluted and spread on SD agar plates containing the indicated nitrogen sources at a concentration of 100 μM or on agar plates containing serum as an inducer of filamentous growth. Individual colonies were photographed after 6 days of incubation at 37°C. The following strains were used: SC5314 (wild type), GLN3M4A and -B (gln3Δ), GLN3MK2A and -B (gln3Δ + GLN3), GAT1M4A and -B (gat1Δ), Δgln3GAT1M4A and -B (gln3Δ gat1Δ), and Δgln3GAT1MK2A and -B (gln3Δ gat1Δ + GLN3). Independently constructed mutants and complemented strains behaved identically, and only one of them is shown in each case. (B) Expression of GFP-tagged Mep2p in the wild-type (strains SCMEP2G7A and -B), gat1Δ (strains Δgat1MEP2G7A and -B), gln3Δ (strains Δgln3MEP2G7A and -B), and gln3Δ gat1Δ (strains Δgln3Δgat1MEP2G7A and -B) backgrounds on SLAD plates. The pictures show fluorescence and corresponding phase-contrast micrographs of cells taken from colonies of the reporter strains grown for 6 days at 37°C.

  • FIG. 6.
    • Open in new tab
    • Download powerpoint
    FIG. 6.

    Inactivation of GAT1 results in MEP2-independent filamentation. The indicated strains were grown for 6 days at 37°C on SLAD plates, and individual colonies were photographed. Independently constructed mutants behaved identically, and only one of them is shown in each case.

  • FIG. 7.
    • Open in new tab
    • Download powerpoint
    FIG. 7.

    Forced expression of MEP2 overcomes the filamentous growth defect of gln3Δ mutants. YPD precultures of the strains were appropriately diluted and spread on SD agar plates containing the indicated nitrogen sources at a concentration of 100 μM. Individual colonies were photographed after 6 days of incubation at 37°C. The following strains were used: SCADH1G4A and -B (wild type + control), Δgln3ADH1G4A and -B (gln3Δ + control), SCMEP2E4A and -B (wild type + PADH1-MEP2), Δgln3MEP2E4A and -B (gln3Δ + PADH1-MEP2), SCMEP2ΔC2E2A and -B (wild type + PADH1-MEP2ΔC440), and Δgln3MEP2ΔC2E2A and -B (gln3Δ + PADH1-MEP2ΔC440). Independently constructed mutants and complemented strains behaved identically, and only one of them is shown in each case.

Tables

  • Figures
  • TABLE 1.

    C. albicans strains used in this study

    Strain(s)Parent strainRelevant genotype or characteristicaReference or source
    SC5314Wild-type strain 8
    CAI4SC5314 ura3Δ::imm434/ura3Δ::imm434 7
    CAI4RU1A and CAI4RU1BCAI4 ura3Δ::imm434/URA3This study
    mep2Δ single and mep1Δ mep2Δ double mutants
        SCMEP2M1ASC5314 mep2-1Δ::SAT1-FLIP/MEP2-2This study
        SCMEP2M1BSC5314 MEP2-1/mep2-2Δ::SAT1-FLIPThis study
        SCMEP2M2ASCMEP2M1A mep2-1Δ::FRT/MEP2-2This study
        SCMEP2M2BSCMEP2M1B MEP2-1/mep2-2Δ::FRTThis study
        SCMEP2M3ASCMEP2M2A mep2-1Δ::FRT/mep2-2Δ::SAT1-FLIPThis study
        SCMEP2M3BSCMEP2M2B mep2-1Δ::SAT1-FLIP/mep2-2Δ::FRTThis study
        SCMEP2M4ASCMEP2M3A mep2-1Δ::FRT/mep2-2Δ::FRTThis study
        SCMEP2M4BSCMEP2M3B mep2-1Δ::FRT/mep2-2Δ::FRTThis study
        MEP2M4A and MEP2M4BCAI4 mep2-1Δ::FRT/mep2-2Δ::FRT 2
        MEP2M4RU1AMEP2M4A ura3Δ::imm434/URA3 mep2-1Δ::FRT/mep2-2Δ::FRTThis study
        MEP2M4RU1BMEP2M4B ura3Δ::imm434/URA3 mep2-1Δ::FRT/mep2-2Δ::FRTThis study
        MEP12M4A and MEP12M4BCAI4 mep1-1Δ::FRT/mep1-2Δ::FRT mep2-1Δ::FRT/mep2-2Δ::FRT 2
        MEP12M6AMEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT mep2-1Δ::FRT/mep2-2Δ::URA3 2
        MEP12M6BMEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT mep2-1Δ::URA3/mep2-2Δ::FRT 2
    Strains expressing a MEP2-GFP fusion under the control of wild-type and mutated MEP2 promoters in a mep1Δ mep2Δ double mutant background
        MEP12MG6AMEP12M4A mep2-1::PMEP2-MEP2-GFP-URA3/mep2-2Δ::FRTThis study
        MEP12MG6BMEP12M4B mep2-1Δ::FRT/mep2-2::PMEP2-MEP2-GFP-URA3This study
        MEP12MG6ΔP1AMEP12M4A mep2-1::PMEP2Δ1-MEP2-GFP-URA3/mep2-2Δ::FRTThis study
        MEP12MG6ΔP1BMEP12M4B mep2-1Δ::FRT/mep2-2::PMEP2Δ1-MEP2-GFP-URA3This study
        MEP12MG6ΔP2AMEP12M4A mep2-1::PMEP2Δ2-MEP2-GFP-URA3/mep2-2Δ::FRTThis study
        MEP12MG6ΔP2BMEP12M4B mep2-1Δ::FRT/mep2-2::PMEP2Δ2-MEP2-GFP-URA3This study
        MEP12MG6ΔP3AMEP12M4A mep2-1Δ::FRT/mep2-2::PMEP2Δ3-MEP2-GFP-URA3This study
        MEP12MG6ΔP3BMEP12M4A mep2-1Δ::FRT/mep2-2::PMEP2Δ3-MEP2-GFP-URA3This study
        MEP12MG6ΔP4AMEP12M4B mep2-1::PMEP2Δ4-MEP2-GFP-URA3/mep2-2Δ::FRTThis study
        MEP12MG6ΔP4BMEP12M4B mep2-1Δ::FRT/mep2-2::PMEP2Δ4-MEP2-GFP-URA3This study
        MEP12MG6ΔP5AMEP12M4A mep2-1::PMEP2Δ5-MEP2-GFP-URA3/mep2-2Δ::FRTThis study
        MEP12MG6ΔP5BMEP12M4B mep2-1Δ::FRT/mep2-2::PMEP2Δ5-MEP2-GFP-URA3This study
        MEP12MG6ΔP6AMEP12M4A mep2-1Δ::FRT/mep2-2::PMEP2Δ6-MEP2-GFP-URA3This study
        MEP12MG6ΔP6BMEP12M4B mep2-1::PMEP2Δ6-MEP2-GFP-URA3/mep2-2Δ::FRTThis study
        MEP12MG6ΔP7AMEP12M4A mep2-1::PMEP2Δ7-MEP2-GFP-URA3/mep2-2Δ::FRTThis study
        MEP12MG6ΔP7BMEP12M4B mep2-1Δ::FRT/mep2-2::PMEP2Δ7-MEP2-GFP-URA3This study
        MEP12MG6MP1AMEP12M4A mep2-1::PMEP2M1-MEP2-GFP-URA3/mep2-2Δ::FRTThis study
        MEP12MG6MP1BMEP12M4B mep2-1Δ::FRT/mep2-2::PMEP2M1-MEP2-GFP-URA3This study
        MEP12MG6MP2AMEP12M4A mep2-1::PMEP2M2-MEP2-GFP-URA3/mep2-2Δ::FRTThis study
        MEP12MG6MP2BMEP12M4B mep2-1::PMEP2M2-MEP2-GFP-URA3/mep2-2Δ::FRTThis study
        MEP12MG6MP3AMEP12M4A mep2-1::PMEP2M3-MEP2-GFP-URA3/mep2-2Δ::FRTThis study
        MEP12MG6MP3BMEP12M4B mep2-1Δ::FRT/mep2-2::PMEP2M3-MEP2-GFP-URA3This study
    Strains expressing MEP2 under the control of wild-type and mutated MEP2 promoters in a mep2Δ background
        MEP2MK13AMEP2M4A mep2-1::PMEP2-MEP2-URA3/mep2-2Δ::FRTThis study
        MEP2MK13BMEP2M4B mep2-1Δ::FRT/mep2-2::PMEP2-MEP2-URA3This study
        MEP2MK13ΔP5AMEP2M4A mep2-1Δ::FRT/mep2-2::PMEP2Δ5-MEP2-URA3This study
        MEP2MK13ΔP5BMEP2M4B mep2-1::PMEP2Δ5-MEP2-URA3/mep2-2Δ::FRTThis study
        MEP2MK13ΔP6AMEP2M4B mep2-1::PMEP2Δ6-MEP2-URA3/mep2-2Δ::FRTThis study
        MEP2MK13ΔP6BMEP2M4B mep2-1Δ::FRT/mep2-2::PMEP2Δ6-MEP2-URA3This study
        MEP2MK13MP1AMEP2M4A mep2-1Δ::FRT/mep2-2::PMEP2M1-MEP2-URA3This study
        MEP2MK13MP1BMEP2M4B mep2-1::PMEP2M1-MEP2-URA3/mep2-2Δ::FRTThis study
        MEP2MK13MP2AMEP2M4A mep2-1Δ::FRT/mep2-2::PMEP2M2-MEP2-URA3This study
        MEP2MK13MP2BMEP2M4B mep2-1::PMEP2M2-MEP2-URA3/mep2-2Δ::FRTThis study
        MEP2MK13MP3AMEP2M4A mep2-1Δ::FRT/mep2-2::PMEP2M3-MEP2-URA3This study
        MEP2MK13MP3BMEP2M4B mep2-1::PMEP2M3-MEP2-URA3/mep2-2Δ::FRTThis study
    gln3Δ mutants and complemented strains
        GLN3M1ASC5314 gln3-1Δ::SAT1-FLIP/GLN3-2This study
        GLN3M1BSC5314 GLN3-1/gln3-2Δ::SAT1-FLIPThis study
        GLN3M2AGLN3M1A gln3-1Δ::FRT/GLN3-2This study
        GLN3M2BGLN3M1B GLN3-1/gln3-2Δ::FRTThis study
        GLN3M3AGLN3M2A gln3-1Δ::FRT/gln3-2Δ::SAT1-FLIPThis study
        GLN3M3BGLN3M2B gln3-1Δ::SAT1-FLIP/gln3-2Δ::FRTThis study
        GLN3M4AGLN3M3A gln3-1Δ::FRT/gln3-2Δ::FRTThis study
        GLN3M4BGLN3M3B gln3-1Δ::FRT/gln3-2Δ::FRTThis study
        GLN3MK1AGLN3M4A GLN3-SAT1-FLIP/gln3-2Δ::FRTThis study
        GLN3MK1BGLN3M4B gln3-1Δ::FRT/GLN3-SAT1-FLIPThis study
        GLN3MK2AGLN3MK1A GLN3-FRT/gln3-2Δ::FRTThis study
        GLN3MK2BGLN3MK1B gln3-1Δ::FRT/GLN3-FRTThis study
    gat1Δ mutants
        GAT1M1ASC5314 gat1-1Δ::SAT1-FLIP/GAT1-2This study
        GAT1M1BSC5314 GAT1-1/gat1-2Δ::SAT1-FLIPThis study
        GAT1M2AGAT1M1A gat1-1Δ::FRT/GAT1-2This study
        GAT1M2BGAT1M1B GAT1-1/gat1-2Δ::FRTThis study
        GAT1M3AGAT1M2A gat1-1Δ::FRT/gat1-2Δ::SAT1-FLIPThis study
        GAT1M3BGAT1M2B gat1-1Δ::SAT1-FLIP/gat1-2Δ::FRTThis study
        GAT1M4AGAT1M3A gat1-1Δ::FRT/gat1-2Δ::FRTThis study
        GAT1M4BGAT1M3B gat1-1Δ::FRT/gat1-2Δ::FRTThis study
    gln3Δ gat1Δ double mutants and complemented strains
        Δgln3GAT1M1AGLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT gat1-1Δ::SAT1-FLIP/GAT1-2This study
        Δgln3GAT1M1BGLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT GAT1-1/gat1-2Δ::SAT1-FLIPThis study
        Δgln3GAT1M2AΔgln3GAT1M1A gln3-1Δ::FRT/gln3-2Δ::FRT gat1-1Δ::FRT/GAT1-2This study
        Δgln3GAT1M2BΔgln3GAT1M1B gln3-1Δ::FRT/gln3-2Δ::FRT GAT1-1/gat1-2Δ::FRTThis study
        Δgln3GAT1M3AΔgln3GAT1M2A gln3-1Δ::FRT/gln3-2Δ::FRT gat1-1Δ::FRT/gat1-2Δ::SAT1-FLIPThis study
        Δgln3GAT1M3BΔgln3GAT1M2B gln3-1Δ::FRT/gln3-2Δ::FRT gat1-1Δ::SAT1-FLIP/gat1-2Δ::FRTThis study
        Δgln3GAT1M4AΔgln3GAT1M3A gln3-1Δ::FRT/gln3-2Δ::FRT gat1-1Δ::FRT/gat1-2Δ::FRTThis study
        Δgln3GAT1M4BΔgln3GAT1M3B gln3-1Δ::FRT/gln3-2Δ::FRT gat1-1Δ::FRT/gat1-2Δ::FRTThis study
        Δgln3GAT1MK1AΔgln3GAT1M4A GLN3-SAT1-FLIP/gln3-2Δ::FRT gat1-1Δ::FRT/gat1-2Δ::FRTThis study
        Δgln3GAT1MK1BΔgln3GAT1M4B gln3-1Δ::FRT/GLN3-SAT1-FLIP gat1-1Δ::FRT/gat1-2Δ::FRTThis study
        Δgln3GAT1MK2AΔgln3GAT1MK1A GLN3-FRT/gln3-2Δ::FRT gat1-1Δ::FRT/gat1-2Δ::FRTThis study
        Δgln3GAT1MK2BΔgln3GAT1MK1B gln3-1Δ::FRT/GLN3-FRT gat1-1Δ::FRT/gat1-2Δ::FRTThis study
    mep2Δ gat1Δ double mutants
        Δmep2GAT1M1ASCMEP2M4A mep2-1Δ::FRT/mep2-2Δ::FRT GAT1-1/gat1-2Δ::SAT1-FLIPThis study
        Δmep2GAT1M1BSCMEP2M4B mep2-1Δ::FRT/mep2-2Δ::FRT gat1-1Δ::SAT1-FLIP/GAT1-2This study
        Δmep2GAT1M2AΔmep2GAT1M1A mep2-1Δ::FRT/mep2-2Δ::FRT GAT1-1/gat1-2Δ::FRTThis study
        Δmep2GAT1M2BΔmep2GAT1M1B mep2-1Δ::FRT/mep2-2Δ::FRT gat1-1Δ::FRT/GAT1-2This study
        Δmep2GAT1M3AΔmep2GAT1M2A mep2-1Δ::FRT/mep2-2Δ::FRT gat1-1Δ::SAT1-FLIP/gat1-2Δ::FRTThis study
        Δmep2GAT1M3BΔmep2GAT1M2B mep2-1Δ::FRT/mep2-2Δ::FRT gat1-1Δ::FRT/gat1-2Δ::SAT1-FLIPThis study
        Δmep2GAT1M4AΔmep2GAT1M3A mep2-1Δ::FRT/mep2-2Δ::FRT gat1-1Δ::FRT/gat1-2Δ::FRTThis study
        Δmep2GAT1M4BΔmep2GAT1M3B mep2-1Δ::FRT/mep2-2Δ::FRT gat1-1Δ::FRT/gat1-2Δ::FRTThis study
    Strains expressing MEP2-GFP or MEP1-GFP fusions in wild-type and mutant backgrounds
        SCMEP2G7ASC5314 mep2-1::PMEP2-MEP2-GFP-caSAT1/MEP2-2This study
        SCMEP2G7BSC5314 MEP2-1/mep2-2::PMEP2-MEP2-GFP-caSAT1This study
        Δgln3MEP2G7AGLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT mep2-1::PMEP2-MEP2-GFP-caSAT1/MEP2-2This study
        Δgln3MEP2G7BGLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT MEP2-1/mep2-2::PMEP2-MEP2-GFP-caSAT1This study
        Δgat1MEP2G7AGAT1M4A gat1-1Δ::FRT/gat1-2Δ::FRT MEP2-1/mep2-2::PMEP2-MEP2-GFP-caSAT1This study
        Δgat1MEP2G7BGAT1M4B gat1-1Δ::FRT/gat1-2Δ::FRT mep2-1::PMEP2-MEP2-GFP-caSAT1/MEP2-2This study
        Δgln3Δgat1MEP2G7AΔgln3GAT1M4A gln3-1Δ::FRT/gln3-2Δ::FRT gat1-1Δ::FRT/gat1-2Δ::FRT MEP2-1/mep2-2::PMEP2-MEP2-GFP-caSAT1This study
        Δgln3Δgat1MEP2G7BΔgln3GAT1M4B gln3-1Δ::FRT/gln3-2Δ::FRT gat1-1Δ::FRT/gat1-2Δ::FRT MEP2-1/mep2-2::PMEP2-MEP2-GFP-caSAT1This study
        SCMEP1G4A and SCMEP1G4BSC5314 MEP1/mep1::PMEP1-MEP1-GFP-caSAT1This study
        Δgln3MEP1G4AGLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT MEP1/mep1::PMEP1-MEP1-GFP-caSAT1This study
        Δgln3MEP1G4BGLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT MEP1/mep1::PMEP1-MEP1-GFP-caSAT1This study
        Δgat1MEP1G4AGAT1M4A gat1-1Δ::FRT/gat1-2Δ::FRT MEP1/mep1::PMEP1-MEP1-GFP-caSAT1This study
        Δgat1MEP1G4BGAT1M4B gat1-1Δ::FRT/gat1-2Δ::FRT MEP1/mep1::PMEP1-MEP1-GFP-caSAT1This study
        Δgln3Δgat1MEP1G4AΔgln3GAT1M4A gln3-1Δ::FRT/gln3-2Δ::FRT gat1-1Δ::FRT/gat1-2Δ::FRT MEP1/mep1::PMEP1-MEP1-GFP-caSAT1This study
        Δgln3Δgat1MEP1G4BΔgln3GAT1M4B gln3-1Δ::FRT/gln3-2Δ::FRT gat1-1Δ::FRT/gat1-2Δ::FRT MEP1/mep1::PMEP1-MEP1-GFP-caSAT1This study
    Strains expressing wild-type and hyperactive MEP2 alleles from the ADH1 promoter or carrying a control construct in wild-type and gln3Δ backgrounds
        SCADH1G4A and SCADH1G4BSC5314 ADH1/adh1::PADH1-GFP-caSAT1This study
        SCMEP2E4A and SCMEP2E4BSC5314 ADH1/adh1::PADH1-MEP2-caSAT1This study
        SCMEP2ΔC2E2A and SCMEP2ΔC2E2BSC5314 ADH1/adh1::PADH1-MEP2ΔC440-caSAT1This study
        Δgln3ADH1G4AGLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT ADH1/adh1::PADH1-GFP-caSAT1This study
        Δgln3ADH1G4BGLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT ADH1/adh1::PADH1-GFP-caSAT1This study
        Δgln3MEP2E4AGLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT ADH1/adh1::PADH1-MEP2-caSAT1This study
        Δgln3MEP2E4BGLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT ADH1/adh1::PADH1-MEP2-caSAT1This study
        Δgln3MEP2ΔC2E2AGLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT ADH1/adh1::PADH1-MEP2ΔC440-caSAT1This study
        Δgln3MEP2ΔC2E2BGLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT ADH1/adh1::PADH1-MEP2ΔC440-caSAT1This study
    • ↵ a SAT1-FLIP denotes the SAT1 flipper cassette.

PreviousNext
Back to top
Download PDF
Citation Tools
Control of Ammonium Permease Expression and Filamentous Growth by the GATA Transcription Factors GLN3 and GAT1 in Candida albicans
Neelam Dabas, Joachim Morschhäuser
Eukaryotic Cell May 2007, 6 (5) 875-888; DOI: 10.1128/EC.00307-06

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Email

Thank you for sharing this Eukaryotic Cell article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Control of Ammonium Permease Expression and Filamentous Growth by the GATA Transcription Factors GLN3 and GAT1 in Candida albicans
(Your Name) has forwarded a page to you from Eukaryotic Cell
(Your Name) thought you would be interested in this article in Eukaryotic Cell.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Control of Ammonium Permease Expression and Filamentous Growth by the GATA Transcription Factors GLN3 and GAT1 in Candida albicans
Neelam Dabas, Joachim Morschhäuser
Eukaryotic Cell May 2007, 6 (5) 875-888; DOI: 10.1128/EC.00307-06
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Candida albicans
GATA Transcription Factors
Gene Expression Regulation, Fungal
Membrane Transport Proteins
Quaternary Ammonium Compounds
Trans-Activators

Related Articles

Cited By...

About

  • About EC
  • For the Media
  • For Librarians
  • For Advertisers
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • Submit a Manuscript to mSphere

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 1535-9778; Online ISSN: 1535-9786