Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Archive
  • About the Journal
    • About EC
    • For Librarians
    • For Advertisers
    • FAQ
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Eukaryotic Cell
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Archive
  • About the Journal
    • About EC
    • For Librarians
    • For Advertisers
    • FAQ
ARTICLE

Saccharomyces cerevisiae Histidine Phosphotransferase Ypd1p Shuttles between the Nucleus and Cytoplasm for SLN1-Dependent Phosphorylation of Ssk1p and Skn7p

Jade Mei-Yeh Lu, Robert J. Deschenes, Jan S. Fassler
Jade Mei-Yeh Lu
Departments of Biological Sciences and Biochemistry, University of Iowa, Iowa City, Iowa 52242
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert J. Deschenes
Departments of Biological Sciences and Biochemistry, University of Iowa, Iowa City, Iowa 52242
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jan S. Fassler
Departments of Biological Sciences and Biochemistry, University of Iowa, Iowa City, Iowa 52242
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jan-fassler@uiowa.edu
DOI: 10.1128/EC.2.6.1304-1314.2003
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Sln1p is a plasma membrane-localized two-component histidine kinase that functions as an osmotic stress sensor in Saccharomyces cerevisiae. Changes in osmotic pressure modulate Sln1p kinase activity, which, together with Ypd1p, a phosphorelay intermediate, changes the phosphorylation status of two response regulators, Ssk1p and Skn7p. Ssk1p controls the activity of the HOG1 mitogen-activated protein kinase pathway. Skn7p is a nuclearly localized transcription factor that regulates genes involved in cell wall integrity and other processes. Subcellular compartmentalization may therefore play an important role in eukaryotic two-component pathway regulation. We have studied the subcellular localization of SLN1 pathway components and find that Ypd1p is a dynamic protein with a role in shuttling the osmotic stress signal from Sln1p to Ssk1p in the cytosol and to Skn7p in the nucleus. The need to translocate the signal into different intracellular compartments contributes a spatial dimension to eukaryotic two-component pathways compared to the prototypical two-component pathways of prokaryotes.

  • Copyright © 2003 American Society for Microbiology
View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Saccharomyces cerevisiae Histidine Phosphotransferase Ypd1p Shuttles between the Nucleus and Cytoplasm for SLN1-Dependent Phosphorylation of Ssk1p and Skn7p
Jade Mei-Yeh Lu, Robert J. Deschenes, Jan S. Fassler
Eukaryotic Cell Dec 2003, 2 (6) 1304-1314; DOI: 10.1128/EC.2.6.1304-1314.2003

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Email

Thank you for sharing this Eukaryotic Cell article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Saccharomyces cerevisiae Histidine Phosphotransferase Ypd1p Shuttles between the Nucleus and Cytoplasm for SLN1-Dependent Phosphorylation of Ssk1p and Skn7p
(Your Name) has forwarded a page to you from Eukaryotic Cell
(Your Name) thought you would be interested in this article in Eukaryotic Cell.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Saccharomyces cerevisiae Histidine Phosphotransferase Ypd1p Shuttles between the Nucleus and Cytoplasm for SLN1-Dependent Phosphorylation of Ssk1p and Skn7p
Jade Mei-Yeh Lu, Robert J. Deschenes, Jan S. Fassler
Eukaryotic Cell Dec 2003, 2 (6) 1304-1314; DOI: 10.1128/EC.2.6.1304-1314.2003
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

DNA-Binding Proteins
Fungal Proteins
Protein Kinases
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Transcription Factors

Related Articles

Cited By...

About

  • About EC
  • For the Media
  • For Librarians
  • For Advertisers
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • Submit a Manuscript to mSphere

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 1535-9778; Online ISSN: 1535-9786