Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Archive
  • About the Journal
    • About EC
    • For Librarians
    • For Advertisers
    • FAQ
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Eukaryotic Cell
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Archive
  • About the Journal
    • About EC
    • For Librarians
    • For Advertisers
    • FAQ
Articles | Spotlight

Secretion of Polypeptide Crystals from Tetrahymena thermophila Secretory Organelles (Mucocysts) Depends on Processing by a Cysteine Cathepsin, Cth4p

Santosh Kumar, Joseph S. Briguglio, Aaron P. Turkewitz
Santosh Kumar
Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joseph S. Briguglio
Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Aaron P. Turkewitz
Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/EC.00058-15
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

In many organisms, sophisticated mechanisms facilitate release of peptides in response to extracellular stimuli. In the ciliate Tetrahymena thermophila, efficient peptide secretion depends on specialized vesicles called mucocysts that contain dense crystalline cores that expand rapidly during exocytosis. Core assembly depends of endoproteolytic cleavage of mucocyst proproteins by an aspartyl protease, cathepsin 3 (CTH3). Here, we show that a second enzyme identified by expression profiling, Cth4p, is also required for processing of proGrl proteins and for assembly of functional mucocysts. Cth4p is a cysteine cathepsin that localizes partially to endolysosomal structures and appears to act downstream of, and may be activated by, Cth3p. Disruption of CTH4 results in cells (Δcth4) that show aberrant trimming of Grl proproteins, as well as grossly aberrant mucocyst exocytosis. Surprisingly, Δcth4 cells succeed in assembling crystalline mucocyst cores. However, those cores do not undergo normal directional expansion during exocytosis, and they thus fail to efficiently extrude from the cells. We could phenocopy the Δcth4 defects by mutating conserved catalytic residues, indicating that the in vivo function of Cth4p is enzymatic. Our results indicate that as for canonical proteins packaged in animal secretory granules, the maturation of mucocyst proproteins involves sequential processing steps. The Δcth4 defects uncouple, in an unanticipated way, the assembly of mucocyst cores and their subsequent expansion and thereby reveal a previously unsuspected aspect of polypeptide secretion in ciliates.

This article is dedicated to our late colleague, friend, and mentor, Don Steiner, a pioneer in the field of proprotein processing.

FOOTNOTES

    • Received 27 March 2015.
    • Accepted 10 June 2015.
    • Accepted manuscript posted online 19 June 2015.
  • Supplemental material for this article may be found at http://dx.doi.org/10.1128/EC.00058-15.

  • Copyright © 2015, American Society for Microbiology. All Rights Reserved.
View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Secretion of Polypeptide Crystals from Tetrahymena thermophila Secretory Organelles (Mucocysts) Depends on Processing by a Cysteine Cathepsin, Cth4p
Santosh Kumar, Joseph S. Briguglio, Aaron P. Turkewitz
Eukaryotic Cell Jul 2015, 14 (8) 817-833; DOI: 10.1128/EC.00058-15

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Email

Thank you for sharing this Eukaryotic Cell article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Secretion of Polypeptide Crystals from Tetrahymena thermophila Secretory Organelles (Mucocysts) Depends on Processing by a Cysteine Cathepsin, Cth4p
(Your Name) has forwarded a page to you from Eukaryotic Cell
(Your Name) thought you would be interested in this article in Eukaryotic Cell.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Secretion of Polypeptide Crystals from Tetrahymena thermophila Secretory Organelles (Mucocysts) Depends on Processing by a Cysteine Cathepsin, Cth4p
Santosh Kumar, Joseph S. Briguglio, Aaron P. Turkewitz
Eukaryotic Cell Jul 2015, 14 (8) 817-833; DOI: 10.1128/EC.00058-15
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About EC
  • For the Media
  • For Librarians
  • For Advertisers
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • Submit a Manuscript to mSphere

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 1535-9778; Online ISSN: 1535-9786