Identification of hypoxia-inducible target genes of *Aspergillus fumigatus* by transcriptome analysis reveals cellular respiration as important contributor to hypoxic survival

Kristin Kroll\(^a\), Vera Pähtz\(^a,g\)*, Falk Hillmann\(^a,e\), Yakir Vaknin\(^f\), Wolfgang Schmidt-Heck\(^b\), Martin Roth\(^c\), Ilse D. Jacobsen\(^d\), Nir Osherov\(^f\), Axel A. Brakhage\(^a,e\) and Olaf Kniemeyer\(^a,e,g\)#

\(^a\)Department of Molecular and Applied Microbiology, \(^b\)Research Group Systems Biology / Bioinformatics, \(^c\)Bio Pilot Plant, \(^d\)Research group Microbial Immunology, the Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany, \(^e\)Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany, \(^f\)Department of Clinical Microbiology and Immunology, Aspergillus and Antifungal Research Laboratory, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel, \(^g\)Integrated Research Treatment-Center, Center for Sepsis Control and Care (CSCC), University Hospital Jena, Germany

*Contributed equally to this work

Address correspondence to Olaf Kniemeyer, olaf.kniemeyer@hki-jena.de

Running title: Hypoxia induced respiratory genes in *A. fumigatus*
Abstract (222 words)

Aspergillus fumigatus is an opportunistic, airborne pathogen causing invasive aspergillosis in immunocompromised patients. During the infection process A. fumigatus is challenged by hypoxic microenvironments occurring in inflammatory, necrotic tissue. To gain further insights into the adaptation mechanism, A. fumigatus was cultivated in an oxygen-controlled chemostat under hypoxic and normoxic conditions. Transcriptome analysis revealed a significant increase of transcripts associated with cell wall polysaccharide metabolism, amino acid and metal ion transport, nitrogen metabolism and glycolysis. A concomitant reduction in transcript levels was observed with cellular trafficking and G-protein coupled signaling. To learn more about the functional roles of hypoxia-induced transcripts we deleted A. fumigatus genes putatively involved in reactive nitrogen species detoxification (fhpA), NAD⁺ regeneration (frdA, osmA) nitrogen metabolism (niaD, niiA) and respiration (rcfB). We show that the NO-detoxifying flavohemoprotein gene fhpA is strongly induced by hypoxia independent of the nitrogen source, but is dispensable for hypoxic survival. By deleting the nitrate reductase gene niaD, the nitrite reductase gene niiA and the two fumarate reductase genes frdA and osmA, we found that alternative electron acceptors such as nitrate and fumarate do not have a significant impact on growth of A. fumigatus during hypoxia, but that functional mitochondrial respiratory chain complexes are essential under these conditions. Inhibition studies indicated that primarily complex III and IV play a crucial role in the hypoxic growth of A. fumigatus.
Introduction

Aspergillus fumigatus is a ubiquitously distributed saprophytic fungus mainly found in the soil where it plays an essential role in the degradation of organic debris (1, 2). The fungus propagates by formation of conidia, which easily disperse into the air. During daily life, humans inhale hundreds of A. fumigatus conidia, which are efficiently eliminated by the host immune system (3, 4). However, in immunocompromised patients, conidia are able to germinate and grow, eventually leading to an invasive infection called invasive aspergillosis (IA). Due to a rising number of immunodeficient patients, the number of cases of invasive aspergillosis has increased in the last decades. The diagnosis of IA is still difficult and thus, mortality rates are unacceptably high ranging from 50-90 % (5). In addition to these clinical aspects of this disease, the pathophysiology of A. fumigatus infections is insufficiently understood. To date, no classic virulence factor has been identified for A. fumigatus and consequently the adaptation mechanisms of A. fumigatus towards the host environment have become a main focus of research.

During infection, long-term low oxygen conditions challenge this obligate aerobe fungus: O_2 levels drop from 21 % in the atmosphere to 14 % in the lung alveoli (6). In the surrounding tissue, oxygen availability is further reduced to 2-4 % and in inflammatory tissue to even less than 1 % (7). Such growth conditions were proposed to shape the pathobiology of A. fumigatus, and their in vivo relevance was further supported by a hypoxia-sensitive mutant (ΔsrhA), which was avirulent in a mouse model of invasive aspergillosis (8, 9). However, the metabolic response of A. fumigatus to hypoxia is less well understood (10). The role of fermentation during hypoxic growth remains ambiguous and the electron transport chain (ETC) is still active at low oxygen levels for energy production (11). This was also shown in a previous report on hypoxia-induced changes of the transcriptome and proteome in A. fumigatus over a period of 24 h (here defined as short-term response) (12). In this work, the
authors used a batch-cultivation and monitored the *A. fumigatus* hypoxic response at the time points 2, 6, 12 and 24 hours. In a recent proteomic study of our group on the long-term response (5-6 days) towards hypoxia *A. fumigatus* was cultivated in an oxygen-controlled chemostat. Under these conditions an increased abundance of all mitochondrial respiratory chain complexes, especially complex III and IV was observed (13). In the same study, activation of NO-detoxifying enzymes was detected. There is some indication that complex IV may produce NO under oxygen-limiting conditions as shown in baker’s yeast (14). The increased levels of NO cause post-translational modifications of proteins, e.g. nitrotyrosination, which may lead to the induction of hypoxic genes (15). Hence, it is supposed that the mitochondrial electron transport chain plays a role in oxygen sensing and hypoxic signaling (16, 17).

However, when the terminal electron acceptor oxygen is limited, many organisms switch from respiration to fermentation to regenerate NAD\(^+\) and to maintain ATP synthesis. Several examples for such alternative electron sinks have already been described in diverse fungal species. In *A. oryzae* and *A. nidulans*, genes involved in ethanol fermentation are induced during hypoxic growth conditions (18). However, for *A. fumigatus* no growth phenotype was observed under oxygen limiting conditions for strains devoid of ethanol fermentation (19). The GABA-shunt pathway has also been proposed to bypass the accumulation of NADH in *A. fumigatus* and *A. nidulans* during hypoxic growth (12, 20, 21). Furthermore, in *A. nidulans* and *Fusarium oxysporum*, growth under oxygen-limiting conditions is supported by using nitrate as an alternative electron acceptor, a process also referred to as ammonia fermentation (22, 23). Taken together, filamentous fungi posses a broad range of metabolic pathways to maintain energy levels under oxygen limiting conditions, but so far their physiological impact on *A. fumigatus* during hypoxia has remained largely unexplored.
In our previous, aforementioned proteomic study we established an oxygen-controlled, glucose-limited chemostat as a model for highly reproducible hypoxic cultivations of *A. fumigatus* (13). A following up proteomic study on the short-term response of *A. fumigatus* to hypoxia (2-24 hours) revealed a surprisingly low correlation between the proteomic data of the two studies (12). This may be explained by the different incubation times (6 days versus 2-24 hours) or culture conditions (glucose-limited chemostat versus batch culture without glucose limitation). To provide further insights into the long-term adaptation mechanism of *A. fumigatus* towards hypoxia we cultivated *A. fumigatus* in either normoxic (21 % pO$_2$) or hypoxic (0.21 % pO$_2$) conditions as described in Vödisch et al. (13) and compared the underlying changes of the transcriptome by microarray analysis. Gene expression at the mRNA level correlated well with our previous proteome data (13), but also suggested an important role for alternative NAD$^+$-regenerating systems and hypoxic NO signaling. Inhibiting the underlying pathways by gene deletion revealed that alternative electron acceptors such as nitrate and fumarate do not have a significant impact on growth during hypoxia in *A. fumigatus*, whereas functional mitochondrial respiratory chain complexes are essential under these conditions.
Methods

Strain and culture conditions

A. fumigatus was grown in *Aspergillus* minimal medium (AMM) as previously described (24) containing 60 mM glucose and 70 mM NaNO₃ as sole carbon and nitrogen source, respectively. To study the long-term response of _A. fumigatus_ to hypoxic growth conditions, _A. fumigatus_ strain ATCC 46645 was grown in a glucose-limited oxystat (chemostat with constant oxygen partial pressure) in a continuous culture as described previously by Vödisch _et al._, 2011 (13). Batch fermentation was used to analyze the short-term response of _A. fumigatus_ to hypoxic growth conditions. Fermentation was carried out as described previously (12). For expression analysis of the flavohemoprotein _fhpA_ either 70 mM NaNO₃ or 20 mM L-glutamine were used as nitrogen sources in batch cultivations of _A. fumigatus_. All strains used in this study are listed in supplementary table S1.

RNA preparation and transcriptome analysis

For microarray analyses, total RNA was isolated from three independent chemostat cultures, grown either under normoxic or hypoxic conditions. Frozen mycelium of _A. fumigatus_ ATCC 46645 was ground to a fine powder and 100 mg were used for total RNA isolation using the Qiagen “RNeasy Mini Kit” according to the manufacturer’s instructions. Following DNase treatment (TurboDNA-free kit, Ambion, Germany) the quantity and quality of RNA preparations were determined spectrophotometrically with a nano-drop (Thermo Fisher Scientific, Germany).

Full genome transcriptomic analyses were performed at Febit (Heidelberg, Germany) as described previously in Gehrke _et al._, 2010 (25). Briefly, custom made Geniom biochips® comprising ~15.000 oligonucleotide probes were designed, covering the expected number of
transcripts based on previous genomic sequence data (26). All data analyses of the FEBIT
microarrays were performed using ‘LIMMA’ (Linear Models for Microarray Data) packages
(27) of the Bioconductor Software (28). Background correction was performed using the
intensities of blank probes which consist of only one single "T" nucleotide. The median
background intensity is subtracted from spot intensity. After converting any negative values to
low positive value, signal intensities were log_2-transformed, and duplicate spots were
averaged. The obtained data were processed using quantile normalization. To obtain the genes
with the most evidence of differential expression, a linear model fit was applied for each gene
using LIMMA. Candidate genes for further analysis were selected on the basis of their fold-
change (≥ 2) and p-value (≤ 0.05). Data of the microarray analyses have been deposited in the
OmniFung Data Warehouse [http://www.omnifung.hki-jena.de] and ArrayExpress (acc-
number E-MTAB-2699). These data can be easily accessed by public login.

Nucleic acid hybridizations

Gene deletions were verified by Southern hybridizations. Briefly, genomic DNA of A.
fumigatus was extracted using the MasterPure yeast DNA purification kit (Epicentre
Biotechnologies, USA) and digested by specific restriction enzymes (New England Biolabs,
Germany). Resulting DNA fragments were separated by agarose gel (1 % w/v)
electrophoresis and transferred onto Hybond™-N⁺ membranes (GE Healthcare Bio-Sciences,
Germany) by capillary blotting. Gene specific DNA probes were generated by PCR including
digoxigenin labeled dUTPs (Jena Bioscience, Germany) or [α-32P]dCTP (Institute of Isotopes
C. Ltd, Hungary). DIG-labeled probes were hybridized with DIG Easy Hyb and detected
using Anti-digoxigenin antibodies and CDP-Star as an ultrasensitive fluorescent substrate of
alkaline phosphatase (Roche Applied Science, Germany). Oligonucleotides used for
amplifying labeled DNA probes are shown in supplementary table S2. For Northern
hybridizations 10 µg of total RNA were separated on a denaturing agarose gel (1.2 % (w/v) agarose, 40 mM MOPS, 10 mM sodium acetate, 2 mM EDTA, 2 % (v/v) formaldehyde, pH 7). Blotting, hybridization and detection were done as described above. Primers used to generate mRNA specific DNA-probes are listed in supplementary table S3.

Generation of fungal strains

Mutants of *A. fumigatus* CEA17ΔakuB^{KU80} (29) were generated by homologous recombination following the transformation of protoplasts (30). All mutant strains used in this study are listed in supplementary table S1.

For deletion of the fumarate reductase *frdA* (AFUA_7G05070) the flanking regions were amplified from genomic DNA with the primer pairs FrdA_LF_fw/FrdA_LFhph_rev and FrdA_RFhph_fw/FrdA_RF_rev. This reaction produces overlapping ends to the hygromycin resistance cassette at the 3'-end of the upstream flanking region and at the 5'-end of the downstream flanking region of the *frdA* gene. The hygromycin resistance cassette was amplified from plasmid pUCHph (31) using the primers Hph_fw and Hph_rev. The *frdA* deletion construct was obtained by a 3-fragment PCR using the primers FrdA_LF_fw and FrdA_RF_rev. Similary, the SREBP transcription factor *srbA* (AFUA_2G01260) was deleted by amplifying the corresponding flanking region using the primers SrbA_LF_fw/SrbA_LFhph_rev and SrbA_RFhph_fw/SrbA_RF_rev.

For deletion of the fumarate reductase *osmA* (AFUA_8G05530), the nitrate reductase *niaD* (AFUA_1G12830) and the nitrite reductase *niiA* (AFUA_1G12840) genes, the corresponding flanking regions were amplified using the primer pairs OsmA_LF_fw/OsmA_LFptrA_rev and OsmA_RFptrA_fw/OsmA_RF_rev, NiaD_LF-fw/NiaD_LFptrA_rev and NiaD_RFptrA-fw/NiaD_RF_rev, and NiiA_LF-fw/NiiA_LFptrA_rev and NiiA_RFptrA-fw/NiiA_RF_rev,
respectively. Here, pyrithiamine resistance was used as selection marker and the respective
gene was amplified from plasmid pSK275 (32) using the primers PtrA_fw and PtrA_rev.

For the generation of the double knock-out strain ΔfrdA/ΔosmA the osmA deletion cassette
containing pyrithiamine resistance (as described above) was used to transform the ΔfrdA
strain. Transformants were selected on AMM plates containing either 0.1 µg/mL pyrithiamine
(Sigma, Germany) or 240 µg/mL hygromycin (Roche Applied Science, Germany).

To generate a C-terminal eGFP fusion protein of the flavohemoprotein FhpA (AFUA_4G03410), 1 kb of the native promoter and the fhpA gene were amplified from genomic DNA
of A. fumigatus CEA17ΔakuB^KU80 using the primers FhpA_GFP_HindIII_ and
FhpA_GFP_BamHI_rev. The obtained DNA fragment was inserted into the vector
p123_eGFP (33) containing the hygromycin resistance cassette. The resulting vector
pfhpA_egfp was ectopically integrated into the genome of A. fumigatus CEA17ΔakuB^KU80
ΔfhpA (derived from M. Vödisch, unpublished data).

All PCR reactions were performed with Phusion High-Fidelity DNA Polymerase (Thermo
Fisher Scientific, Germany) according to the manufacturer’s recommendations. All
oligonucleotides used for the generation of mutant strains are listed in supplementary table S2.

The deletion construct for rcfB (AFUA_1G12250) was prepared using the yeast
recombinational cloning technique (34). Primers were designed and synthesized with the 5’
common regions highlighted in italic in supplementary table S2. The hygromycin cassette
(Hph), containing 5’ and 3’ HindIII and XbaI restriction sites, was generated by PCR
amplification using primers Hph 5’ and Hph 3’. Yeast shuttle vector pYes2 was digested with
HindIII and XbaI. Yeast strain BY4741 was used for yeast transformation following the
protocol described by Collopy et al., 2010 (34). Yeast DNA was prepared with the
Masterpure Yeast DNA Purification Kit (Epicentre Biotechnologies, USA). Transformation of
A. fumigatus CEA17ΔakuB^KU80 protoplasts with linearized plasmids ΔAfu1g12250-Hph (EcoRV) was carried out as previously described (35).

Growth susceptibility assays

Conidia were harvested after 5 days of cultivation on AMM agar plates with sterile water and filtered through a 40-μm cell strainer (BD Biosciences, Germany). Conidia were serially diluted in sterile water to obtain defined concentrations and 10^5, 10^4, 10^3 and 10^2 conidia were spotted in a volume of 5 μL on AMM agar plates in the presence of certain stress-inducing agents. Growth was documented after 48 or 72 h incubation at 37 °C.

To generate nitrosative stress conditions, different concentrations of sodium nitrite were added in acidified AMM (pH 4.5). Reductive stress conditions were induced by the addition of 10 mM TCEP-HCL (final concentration).

Normoxic or two hypoxic atmospheres consisting of either 1 % O_2 and 5 % CO_2 (HeraCell 150, Thermo Fisher Scientific, Germany) or 0.2 % O_2 and 5 % CO_2 (H35 Hypoxystation, Don Whitley Scientific, UK) were used to monitor growth of A. fumigatus on AMM agar plates.

A. fumigatus wild-type strain and the hypoxia sensitive strain ΔsrbA were cultivated in the presence of specific respiratory chain inhibitors (Sigma Aldrich, Germany): 1, 2, 3, and 4 mM rotenone (complex I inhibitor); 50, 75, 100 and 150 μM flavone (inhibitor of alternative NADH:ubiquinone oxidoreductases); 100, 200, 300, 400 and 500 mM disodium malonate (complex II inhibitor); 5, 10 and 20 μM antimycin A (complex III inhibitor); 0.25, 0.5 and 1 mM sodium azide (complex IV inhibitor); 5, 10 and 20 μM oligomycin (complex V inhibitor); 0.5, 1 and 2 mM 2,4-dinitrophenole (transmembrane H^+ carrier inhibitor) and 2.5, 5 and 10 mM salicylhydrosamic acid (alternative oxidase inhibitor). 5 μL aliquots of each strain were spotted in 10-fold serial dilutions on AMM agar plates containing the respective inhibitor at the concentration as indicated above.
Reductive stress assay
To monitor growth in presence of the reductive stress agent TCEP-HCl (Merck KGaA, Germany) in liquid culture (96 MTP format), 2,000 conidia were inoculated per well, containing AMM supplemented with 0-20 mM TCEP-HCl. The plate was incubated for 3 days at 37 °C and growth was documented.

Determination of succinic acid concentration
The concentration of succinic acid in the culture supernatant was quantified by an enzymatic detection kit according to the manufacturer’s instructions (UV-test for succinic acid, R-Biopharm, Germany).

Fluorescent microscopy studies
For fluorescence imaging, 50 µL AMM (containing either nitrate [70 mM] or glutamine [20 mM] as nitrogen source) were inoculated with 1 x 10^4 conidia of an FhpA_eGFP strain on glass cover slips in a wet chamber. After 14 h precultivation under normoxic conditions at 37 °C samples were shifted to a hypoxic atmosphere with 1 % O_2 and 5 % CO_2 at 37 °C (HeraCell 150, Thermo Fisher Scientific, Germany). Samples were analyzed after 0, 3, 6, 12 and 24 h of hypoxia using a Leica DMI 4000B fluorescence microscope (Leica Microsystems, Germany). Images were taken with a Leica DFC480 camera and analyzed by Leica LAS V.3.7 software.

Egg infection model
Virulence of *A. fumigatus* CEA17ΔakuB^KU80 and the deletion strains ΔfrdA, ΔosmA, ΔfrdA/ΔosmA and ΔniiA was tested in an established egg model for *Aspergillus* species (36). Briefly, after 7 days cultivation on Malt agar plates at room temperature, conidia were
harvested in PBS containing 0.1% Tween 20 (v/v) and filtered with a 40 µM cell strainer (BD Bioscience, Germany). After counting conidia using either a counting chamber (Roth, Germany) or the CASY® Cell counter analyzer TT (Roche Applied Science, Germany) conidia were diluted with PBS to a concentration of 10^4 conidia/mL just prior infection. PBS alone was used as a negative control. Embryonated eggs were incubated at 37.6 °C and 50-60% relative humidity (BSS 300, Grumbach, Germany). After 10 days of incubation twenty eggs per group were infected with 10^3 conidia/egg via the chorioallantoic membrane (CAM) and survival was monitored daily over 7 days by candling. Survival data were plotted as Kaplan-Meyer curves and statistically analyzed by a log rank test using Graph Pad Prism 5.00 (GraphPad Software, USA).

Statistics

The Student’s t-test was used for significance testing of two groups. Differences between the groups were considered significant if $p \leq 0.05$ or $p \leq 0.01$.

Results

Gene expression in long-term hypoxia adapted *A. fumigatus*

To study the effect of long-term exposure to hypoxia on the transcriptional profile of *A. fumigatus* we cultivated the fungus in a chemostat, which allowed us to vary the oxygen partial pressure (21 % pO$_2$ and 0.21 % pO$_2$), while all other cultivation parameters such as glucose concentration, pH and temperature were kept constant. A dilution rate of 0.08 h$^{-1}$ was applied to ensure the same growth rate under normoxic and hypoxic conditions. Steady-state growth was reached after between 3-4 days and the biomass of 750 mg dry weight l$^{-1}$ was harvested after 5-6 days followed by RNA extraction.

Febit Geniom Biochips representing 15,000 open reading frames were hybridized with RNA from three replicates of each sample. We applied a principle component analysis method (Sammon’s Non Linear Mapping) to determine sample variance and to identify outliers. One sample outlier (0.21 % O$_2$) was detected, which was excluded from further analysis. Genes showing at least 2-fold changes in expression (p value ≤ 0.05) were considered to be differentially expressed.

In total, 1,614 genes were up- and 1,260 genes were significantly down-regulated in *A. fumigatus* during growth under hypoxia in a glucose-limited chemostat (data set S1). Gene set enrichment (GSE) analysis based on FunCat and GO classification was performed to gain a general overview of the type of categories affected by hypoxia (Fig. 1 and Fig. S1). Specific categories of transcripts that were significantly up-regulated under hypoxia were associated with nuclear and RNA-transport, energy conversion, polysaccharide degradation, DNA topology, enzyme activation, amino acid-, metal ion- and transmembrane transport, nitrogen compound and metabolic process, the glyoxylate cycle, gluconeogenesis and methionine biosynthesis. Furthermore, several flavine-containing enzymes involved in oxidation-
reduction processes were also up-regulated. As expected, many additional metabolic changes occurred in response to hypoxia. Many glycolytic gene transcripts and several transcripts related to ethanol fermentation showed higher mRNA abundance in hypoxia: a pyruvate decarboxylase (AFUA_3G11070) along with two alcohol dehydrogenases, *alcC* (AFUA_5G06240) and *adh2* (AFUA_2G10960). In agreement with previous findings from other fungi that the GABA shunt could reduce NADH accumulation at low oxygen levels, we found transcription of the succinate-semialdehyde dehydrogenase gene (AFUA_3G07150) to be significantly higher in response to hypoxia. Considering transcription factors, transcript levels of the central regulator of hypoxia adaptation, *SrbA* (AFUA_2G01260), was also activated as the mRNA of this transcription factor was increased 4.9-fold, which in turn activated key enzymes of sterol metabolism. An increased need for iron under hypoxia is illustrated by the fact that the iron regulator *HapX* (AFUA_5G03920) was slightly up-regulated (1.2-fold), whereas the repressor of iron acquisition, *SreA* (AFUA_5G11260), showed lower transcript levels (-2.8) under hypoxia.

Other FunCat categories were significantly reduced in response to hypoxia, and include amongst others cytoskeleton/structural proteins, ER to Golgi transport, modification by phosphorylation, osmosensing and response, cell redox homeostasis, phospholipid metabolism and G-protein mediated transduction. Presumably, in hypoxic grown-cells there is a reduction in cellular trafficking and signaling activity via G-protein coupled receptors and small GTPases.

When comparing these gene expression data to the hypoxia proteome from our previous study (13), we found a good correlation. Two thirds of the proteins (44 out of 66) showed the same tendency of regulation as their corresponding transcript (Tab. S4). An opposite change in abundance was observed for a few glycolytic enzymes, antioxidative proteins, enzymes of the
TCA cycle and the electron transport chain, which suggests a regulation of these proteins at the posttranscriptional level.

A comparison with the transcriptome data of the hypoxic response of *A. fumigatus* cultivated in a batch-fermenter at low oxygen levels for 24 hours by Barker *et al.* (12) revealed that only 27% of the 867 significantly altered genes were also differentially expressed in our study (Fig. S2). These transcripts included genes involved in metabolic processes such as amino acid, lipid and terpenoid biosynthesis, cofactor and nucleotide metabolism, as well as replication, cellular transport processes and protein folding/modifications. The biggest differences were seen in the FunCat categories transcription and protein synthesis. Transcription levels of genes involved in these processes decreased only significantly in the study of Barker *et al.* (12). This suggests that transcription and translation is only transiently down-regulated during hypoxia.

Confirmation of microarray data by Northern blot analyses

To confirm the robustness and quality of our transcriptome data from *A. fumigatus* cultivated in an oxygen-controlled chemostat, we analyzed the gene expression of five selected genes during hypoxia by Northern hybridization (Fig. 2). These included genes involved in reactive nitrogen species detoxification (*fhpA*, AFUA_4G03410), NAD$^+$ regeneration (*frdA*, AFUA_7G05070), nitrogen metabolism (*niiA*, AFUA_1G12840) and respiration (*cox5b*, AFUA_2G03010; *rcfB*, AFUA_1G12250). Hereby, RNA samples produced for our microarray experiment were used.

The microarray data revealed a 17-fold up-regulation of the flavohemoprotein encoding gene *fhpA*, which was also confirmed by Northern blot analysis (Fig. 2). This result is consistent with the proteome analysis of both long- and short-term response of *A. fumigatus* under hypoxic growth conditions (12, 13). Another interesting finding of the microarray study was...
the drastically increased expression (321-fold up-regulation) of the cytosolic fumarate reductase gene frdA, which was also verified by Northern hybridizations (Fig. 2). For the gene osmA, which encodes for the fumarate reductase isoenzyme OsmA (AFUA_8G05530), the extent of induction was by more than one order of magnitude lower. However, Northern blot analysis revealed no clear difference in the expression level of osmA during normoxia and hypoxia (Fig. 2).

In addition, the microarray data revealed, that several transcripts linked to nitrate metabolism were significantly increased (Tab. 1). Among them, the nitrite reductase niiA transcript showed the highest increase in expression level. However, Northern blot analyses revealed only a slight increase of niiA mRNA steady-state levels and no altered expression of nitrate reductase niaD during hypoxic growth conditions (Fig. 2).

Interestingly, two components of the cytochrome c-oxidase respiratory complex, which acts as the terminal enzyme of the respiratory chain, were also expressed at significantly higher levels during hypoxia. This was subsequently confirmed by Northern hybridizations as well (Fig. 2). These two genes encode the integral subunit CoxVb and an Rcf2-like protein, here named RcfB. The orthologous gene from S. cerevisiae was also reported to be highly up-regulated under hypoxia (37, 38). The other known respiratory supercomplex factor similar to RcfB, RcfA (AfuA_4G08130) was not significantly up-regulated under our experimental hypoxic conditions.

Taken together, these data prompted us to analyze the impact of NO-detoxification, NAD⁺-regeneration and respiration on the hypoxic adaptation of A. fumigatus in more detail.

Nitrate-independent induction of the flavohemoprotein FhpA during hypoxia

To elucidate the role of the flavohemoprotein FhpA during hypoxia we characterized its regulation in more detail. In Aspergilli, the NO dioxygenase activity of flavohemoproteins...
suggests a role in the detoxification of nitric oxide (NO), which is formed during nitrate assimilation (39, 40). In agreement, it was shown that \textit{fhpA} is expressed in the presence of nitrate, but repressed when glutamine is used as sole nitrogen source (K. Lapp, M. Vödisch, K. Kroll, V. Pähtz, S. Bruns, M. Strassburger, J. Linde, R. Guthke, O. Kniemeyer, V. Valiante, T. Heinekamp and A. A. Brakhage, own unpublished data). This raises the question whether the observed up-regulation of \textit{fhpA} was induced by hypoxia or by the nitrate assimilation process. Thus, \textit{A. fumigatus} was cultivated after 14 h normoxic pre-cultivation under hypoxic batch fermentation for 24 h, using either nitrate or glutamine as a sole nitrogen source. Subsequently the expression of \textit{fhpA} was monitored over time (Fig. 3A). In the presence of nitrate, the hypoxia-induced expression of \textit{fhpA} remained constant over time. In contrast, when using glutamine as a nitrogen source the expression levels of \textit{fhpA} increased after 3 h of hypoxia, but dropped to their original level after longer periods of oxygen depletion. Therefore, we conclude that nitrate promotes a stronger and longer-lasting induction of \textit{fhpA} expression under hypoxia than glutamine. These results were further confirmed by expression analysis of a FhpA-eGFP fusion protein in an \textit{A. fumigatus} strain cultivated under similar conditions (Fig. 3B, Fig. S3). This suggests that the expression of the flavohemoprotein \textit{fhpA} is induced by hypoxia independently of the nitrogen source, whereas the duration of expression is dependending on it. The contribution of FhpA to the hypoxic survival of \textit{A. fumigatus} was tested by cultivating an \textit{ΔfhpA} deletion (unpublished data) strain under hypoxic (0.2 % O\textsubscript{2}) and normoxic (21 % O\textsubscript{2}) conditions with either nitrate or glutamine as nitrogen source. However, the \textit{ΔfhpA} strain showed a wild-type growth phenotype under hypoxic conditions.

\textbf{Nitrate metabolism during hypoxia}
Under anaerobic conditions, a variety of bacteria and fungi such as *Bacillus subtilis*, *Escherichia coli* or *Fusarium oxysporum* are able to use alternative terminal electron acceptors (41-45). Among them, nitrate (NO$_3^-$/NO$_2^-$) with a relatively high redox potential, (E° = +0.42 V) is the most efficient electron acceptor besides oxygen (E° = +0.82 V).

However, no dissimilatory nitrate reduction has been reported for *A. fumigatus*. The fungus assimilates nitrate via nitrite (NO$_2^-$) reduction to ammonium (NH$_4^+$). These reactions are catalyzed by the NADPH-dependent assimilatory nitrate and nitrite reductases, NiaD (AFUA_1G12830) and NiiA (AFUA_1G12840), respectively. Whether this pathway may serve as alternative electron sink during hypoxia in *A. fumigatus* has not been shown yet.

To study the impact of these two enzymes on the adaptation to hypoxia, we generated the corresponding deletion mutants ΔniaD and ΔniiA (Fig. S4A-B). As expected, lack of niaD or niiA abolished growth when nitrate was used as sole nitrogen source (data not shown).

Surprisingly, in the presence of other primary nitrogen sources, such as glutamine or ammonium tartrate, growth of strain ΔniiA was also slightly reduced compared to the wild type and the ΔniaD strain (Fig. S4C). However, no altered growth phenotype of the mutants was observed under hypoxic conditions (Fig. S4C), which confirmed that these assimilatory enzymes are not linked to respiratory nitrate ammonification in *A. fumigatus* during hypoxic growth conditions. More likely, these enzymes may be involved in nitric oxide intermediate (RNI) detoxification. It has been shown, that the mitochondrial cytochrome c oxidase Cco can produce nitric oxide NO* by reducing NO$_2^-$ under oxygen limiting conditions (14, 46-49). To test whether the increased expression of niaD and niiA were caused by NO*-formation during hypoxia, ΔniaD, ΔniiA and the corresponding wild-type strain CEA17ΔakuB$^\text{KU80}$ were cultivated in the presence of sodium nitrite, which decomposes spontaneously to nitric oxide at an acidic pH of 4.5 (50) (Fig. 4). Resistance towards NO of the ΔniaD-strain was similar to the wild type, whereas growth of the ΔniiA-strain was visibly impaired (Fig. 4). However,
agar diffusion assays with the NO-donor DETA-NO (data not shown) revealed no difference in sensitivity between ΔniiA and the wild type. Taken together, these data suggest that the nitrite reductase NiiA is only indirectly involved in the adaptation to hypoxic growth conditions. Its role in detoxifying harmful RNIs during hypoxia remains unclear. Its slight up-regulation under these conditions may also simply be explained by a co-regulation with FhpA as reported from A. nidulans (40).

To analyze the impact of niiA on virulence, embryonated eggs were infected with spores of the ΔniiA strain. However, no significant differences in survival were observed between embryonated eggs infected with the mutant and the corresponding wild-type strain (Fig. S5A).

Fumarate metabolism during hypoxia

Besides nitrate, fumarate represents another alternative electron acceptor in the absence of oxygen. The yeast S. cerevisiae genome contains two soluble fumarate reductases that are essential for anaerobic growth (51). In A. fumigatus, the cytosolic FAD dependent oxidoreductase FrdA (AFUA_7G05070) revealed 43% amino acid identity to the cytosolic fumarate reductase Frd1 in S. cerevisiae. The second fumarate reductase of A. fumigatus OsmA (AFUA_8G05530) was 42% identical to the corresponding yeast homologue which is localized in the promitochondria (51). Remarkably, under hypoxic conditions, fumarate reductase frdA represented the gene with the highest induction found in our microarray study. This is in agreement with the increased abundance of FrdA in the proteome of the short-term response of A. fumigatus against hypoxia (12).

Next, we examined the time-dependent change of gene expression levels of fumarate reductases frdA and osmA in more detail during a 24 h period of hypoxia (batch cultivation). Similar to the results of the chemostat, during batch cultivation expression of frdA was induced over all time points tested (Fig. 5A). In contrast, transcript levels of osmA were
transiently increased within the first 3 h of hypoxia (Fig. 5A). When we quantified the fumarate reductase product succinic acid we could indeed detect increased concentrations of succinic acid in the culture supernatants of hypoxic batch fermentations. However, during hypoxia the amount of succinic acid increased only slightly over time from 0.04 mM to 0.085 mM and the concentration remained low (Fig. 5B).

To investigate the role of both fumarate reductases during hypoxia in more detail frdA and osmA were deleted in A. fumigatus (Fig. S6A-B) and the growth phenotypes of the obtained knock-out strains ΔfrdA, ΔosmA and the double mutant ΔfrdA/ΔosmA were further characterized. However, no significant differences were observed in growth between wild type and knock-out strains under hypoxia (Fig. S6C-D). In yeast, fumarate reductases are involved in the re-oxidation of FAD-prosthetic groups of flavoenzymes during anaerobiosis (52). This fits with a slight growth defect of the ΔfrdA, ΔosmA and ΔfrdA/ΔosmA strains in the presence of tris(2-chloroethyl)phosphate (TCEP) (Fig. 5C-D). TCEP reduces disulfide bonds as sufficiently as DTT, but in contrast to DTT it is relatively resistant to air oxidation. All three mutants did not grow in the presence of 20 mM TCEP in liquid AMM medium, whereas the wild type still formed hyphae. Reducing agents as TCEP induce reductive stress and the unfolded protein response (UPR) in fungal cells. Finally, to analyze any potential impact of fumarate reductases on the virulence of A. fumigatus, the ΔfrdA, ΔosmA and ΔfrdA/ΔosmA strains were tested in an embryonated egg infection model. However, no significant differences in virulence between eggs infected with fumarate reductase deletion strains and eggs infected with the wild type were observed, indicating that the enzymes are dispensable for infection in this particular, alternative model (Fig. S5B).

Taken together, these data demonstrate that fumarate reductases are unlikely to function as respiratory enzymes, but may contribute to regenerate the FAD/FMN prosthetic group of flavoenzymes in A. fumigatus.
Role of respiratory complexes during hypoxic adaptation

Despite previous indications for fermentation pathways, mitochondrial respiration has proven to be essential during hypoxia (11, 13). To further investigate the robustness of this pathway and the specific contribution of each individual respiratory complex to hypoxic survival, A. fumigatus wild-type strain and the hypoxia sensitive strain ΔsrbA were cultivated in the presence of specific respiratory chain inhibitors.

Inhibiting complex I by rotenone had no effect on the growth of A. fumigatus during normoxia and resulted in only a very slight reduction of growth under hypoxic conditions in a concentration-dependent manner (Fig. S7A). When complex I is inhibited, fungi and plants are able to regenerate NAD$^+$ via alternative NADH:ubiquinone oxidoreductases (53, 54). In turn, inhibiting these alternative NADH dehydrogenases by flavone resulted in a strong growth defect under both normoxic and hypoxic conditions (Fig. S7B). Even when combining both inhibitors (rotenone and flavone) of the respiratory NAD$^+$ regeneration system A. fumigatus was still able to grow in normoxic and hypoxic atmospheres (Fig. S7C). Similarly, as for complex I, inhibition of the complex II component succinate dehydrogenase by disodium malonate, of complex V by oligomycin or of the transmembrane H$^+$ carrier by 2,4-dinitrophenol resulted in a reduction in fungal growth, which was, however, largely independent of the atmospheric O$_2$-levels (Fig. S8, Fig. S9).

Hypoxia-specific effects were seen only for complexes III and IV. During normoxia the lowest applied concentration of the complex III inhibitor antimycin A (5 µM) provoked only a slight inhibitory effect on growth of A. fumigatus, but growth was severely impaired when using the same concentration under hypoxic conditions (Fig. 6A). Similar results were obtained when complex IV was inhibited by sodium azide (Fig. 6B). Under normoxia, growth of A. fumigatus was reduced independent of the applied inhibitor concentration. In contrast,
under hypoxic conditions sodium azide inhibited growth of *A. fumigatus* in a highly concentration-dependent manner. At a concentration of 0.25 mM sodium azide, the wild type did show a difference in sensitivity between normoxic and hypoxic conditions. This may be explained by a compensatory increased activity of the alternativ oxidase AOX.

Many fungi are equipped with an AOX. It represents a terminal ubiquinol oxidase bypassing complex III and IV of the electron transport chain (53, 54). The specific AOX-inhibitor SHAM reduced growth of *A. fumigatus* wild type in a concentration-dependent manner under both normoxic and hypoxic conditions (Fig. 7A). Remarkably, the mutant strain Δ*srbA* (Fig. S10A), deleted in the hypoxia regulator SrbA, showed poor growth in presence of SHAM. To investigate this further, Northern blot analysis was performed, which revealed an increased expression of *aox* in the Δ*srbA* mutant under normoxic conditions (Fig. 7B). However, for cytochrome C (*cycA*) no altered gene expression was observed between *A. fumigatus* wild type and Δ*srbA* (Fig. 7B). This finding suggests that SrbA is directly or indirectly a negative regulator of the *aox* gene under normoxic conditions.

Taken together, our data indicate that complex III and IV play an essential role in the adaptation process towards hypoxic growth conditions.

Furthermore, our microarray data suggested that additional factors may contribute to the assembly of respiratory complexes especially under hypoxic conditions. One candidate gene encodes a protein which comprised a HIG-1 domain (PF04588, hypoxia inducible gene) and revealed 32% of identical amino acids to the Rcf2 protein from *S. cerevisiae*. In *S. cerevisiae*, Rcf2 and its close homologue Rcf1, which is essential for hypoxic growth (55), are involved in the assembly of respiratory supercomplexes (37). The hypoxic induction of the corresponding homologue *rcfB* in *A. fumigatus*, prompted us to analyze whether its protein product would also play a vital role in the assembly of these complexes during hypoxic adaptation of *A. fumigatus*. The deletion of the *rcfB* gene (Fig. S10B) led to a general slight
delay in growth, which was independent of the oxygen partial pressure. However, the sporulation of the mutant strain ΔrcfB was delayed after two days of incubation under mild hypoxia (1% pO₂) compared to the wild-type strain (Fig. 8).
Discussion

This study investigated the transcriptional response of *A. fumigatus* to hypoxia. Many similarities in the adaptation to hypoxia can be found when comparing our results with previous studies in *Aspergillus* species. As observed for *A. nidulans* and *A. oryzae* (18, 20) intracellular trafficking processes and cytoskeletal transcripts were down-regulated under hypoxic conditions, most probably in order to reduce ATP consumption. In contrast, genes participating in the glyoxylate pathway were up-regulated under hypoxic conditions, whereas the regulation of glycolytic genes was heterogenous (Dataset 1). In this aspect, the hypoxic response of *A. fumigatus* resembles that of *A. oryzae* (18). The induction of the glyoxylate cycle may help to avoid NADH accumulation by bypassing two NADH-producing steps of the TCA cycle. The increased levels of transcripts contributing to amino acid transport are consistent with results from *A. nidulans* (18) and may point to an increased production of specific amino acids under hypoxia.

In a previous study, we characterized the adaptation of *A. fumigatus* to hypoxia in a batch-fermenter within a time window of 2 to 24 hours (defined here as short-term response). Although the growth conditions were different (shorter incubation, batch fermentation, excess of glucose) as described here, cell wall and sterol biosynthesis transcripts were up-regulated (12). Similarly, with regard to respiration, complex IV associated transcripts were increased in response to hypoxia.

Based on the obtained transcriptome data undertaken in this study, we tested our hypothesis regarding the impact of alternative respiration in *A. fumigatus* during growth under long-term hypoxic conditions. We aimed to elucidate the role of the single respiratory complexes in the adaptation process of *A. fumigatus* to hypoxia by using specific respiratory inhibitors. In addition, we analyzed the impact of alternative electron acceptors, such as nitrate and...
fumarate, on hypoxic growth of *A. fumigatus* in more detail by the generation of specific knock-out strains.

Several microorganisms including different bacterial and fungal species make use of alternative electron acceptors, such as nitrate, when oxygen is limited (41-45). Indeed, our microarray experiment indicated that transcripts associated with nitrogen metabolism significantly increased in response to hypoxic growth conditions. The transcript level of the assimilatory nitrite reductase *niiA* was significantly induced, whereas the expression of the nitrate reductase *niaD* was only slightly affected. Northern blot analysis revealed a slight increase in transcription levels of *niiA* and *niaD*. However, our previous proteome study analyzing the long-term response of *A. fumigatus* to hypoxia did not provide any evidence for NAD⁺ regeneration via nitrate reduction (13). In line with this observation, the deletion of the assimilatory nitrate and nitrite reductases did not affect growth under hypoxic conditions. This suggests that in *A. fumigatus*, in contrast to *A. nidulans*, nitrate reduction does not significantly support growth under hypoxia in *A. fumigatus* (22, 23). In *F. oxysporum* and *Cylindrocarpon tonkinense*, membrane-bound, dissimilatory nitrate (dNaR) and nitrite reductases (dNiR) were found to be part of a fungal denitrifying system, which is localized in the mitochondria coupling with the electron transport chain to generate ATP under oxygen-limited conditions (42, 56, 57). Among them the fungal dNiR protein (*nirK*) of *F. oxysporum*, which is a copper-containing nitrite reductase, was found to be the eukaryotic ortholog of the bacterial counterpart. The C-terminal dNiR domain of *nirK* of *F. oxysporum* shares 76% identity with the respective amino acid sequence of the multicopper oxidase in *A. fumigatus* (58). This protein was also found in our microarray analyses to be induced upon oxygen limitation (Tab. 1). However, deletion mutants for this gene (AFUA_3G14950) were indistinguishable from the wild type irrespective of the O₂ levels (data not shown).
The increased expression of transcripts associated with nitrate/nitrite reduction may also be explained by a putative role of these enzymes in RNI detoxification. For example, a contribution of nitrite reductase to NO management in an oxygen-limited environment has been reported for bacteria like *E. coli* (59). Indeed, under low oxygen concentrations NO levels may increase, since the mitochondrial respiratory chain complex is capable of producing NO* by reducing NO₂⁻ (14, 15, 46-49). This oxygen-independent process, which is activated under hypoxic or anoxic conditions, is catalyzed by the cytochrome c oxidase Cco (14, 15).

Commonly, flavohemoglobins detoxify harmful NO within the fungal cell (60, 61). In our microarray analyses the flavohemoglobin gene *fhpA* was found to be up-regulated by a factor of 17 upon exposure to hypoxia, which is consistent with results obtained from previous proteomic studies (12, 13). In the presence of nitrate, *fhpA* was induced over the entire time course of hypoxia, whereas *fhpA* was only up-regulated within the first three hours of hypoxia when using glutamine as nitrogen source. This observation was further confirmed by fluorescence microscopy studies of a FhpA-eGFP fusion strain. Thus, we could demonstrate that the expression of *fhpA* is induced independently of the available nitrogen source under hypoxia. This favors the idea that elevated amounts of RNS are produced during hypoxia, although their origin is currently unknown.

FhpA utilizes O₂ and NAD(P)H to convert NO to NO₃⁻. This oxygen dependence of NO detoxification supports the idea that alternative, reductive enzymes, such as the nitrite reductase NiiA, may take over the function of FhpA under hypoxia. Alternatively, the induction of NiiA may be explained by a spontaneous oxidation of NO to NO₂⁻ (62). However, there was only a moderate induction of *niiA* expression during hypoxia in the Northern blot analysis. In addition, the Δ*niiA* deletion mutant showed only sensitivity against NO₂⁻ at acidic pH, but not in the presence of the NO-donor DETA-NO.
None of the deletion mutants was growth-impaired in hypoxia. Thus, we conclude that the increased expression of FhpA and nitrate and nitrite reductases was rather caused by NO-formation under hypoxia than by the hypoxic conditions itself.

Overall, in *A. fumigatus*, nitrate reduction does not seem to provide a mechanism to reload the pool of NAD(P)⁺ or FAD⁺ when O₂ becomes limiting. Alternatively, the reduction of fumarate to succinate is linked with the regeneration of NAD⁺ and may function as an electron sink as described for *Mycobacterium tuberculosis* (63). Also, the fungal species *A. niger*, *A. oryzae* and *S. cerevisae* produce elevated amounts of succinate under oxygen limiting conditions (18, 52, 64). Gene expression of the cytosolic fumarate reductase *frdA* was significantly induced in *A. fumigatus* during hypoxia, and succinate was detectable in the supernatant of hypoxic batch cultures.

However, transcript levels of the mitochondrial fumarate reductase gene *osmA* remained constant and thus were not affected by oxygen availability. These findings are consistent with the reported regulation of the fumarate reductases *frd1* and *osm1* in *S. cerevisae* during anaerobiosis (52). Contrary to *S. cerevisae*, in *A. fumigatus* deletion of fumarate reductases as single or double knock-out strains had no effect on the growth phenotype under hypoxia (51). Besides NAD⁺ regeneration, other functions have been suggested for fumarate reductases, in particular redox balancing during anaerobiosis and the re-oxidation of flavin cofactors (52, 65, 66). In line with this assumption, the *A. fumigatus* fumarate reductase deletions strains ∆frdA, ∆osmA and ∆frdA/∆osmA were more susceptible to the reducing agent TCEP, which affects the intracellular redox homeostasis. In summary, the *A. fumigatus* fumarate reductase *frdA* may be highly up-regulated during hypoxia to maintain redox homeostasis. Hence, our study supports the hypothesis that the expression of fumarate reductase is up-regulated during hypoxia to reoxidize flavin cofactors and thus to keep flavoenzymes in their oxidative state.
Our data and previous studies on A. fumigatus and other fungi indicated an association of functional mitochondria with the ability to adapt to low oxygen environments (11, 17, 67-70). The up-regulation of several respiratory genes during long-term exposure to hypoxia is also consistent with the increased production of components of the electron transport chain and oxidative phosphorylation on the proteome level (12, 13). Besides the classical electron transport chain via complex I to IV, fungi and plants possess also alternative routes: the alternative NADH:ubiquinone oxidoreductase (a bypass of complex I) and the alternative oxidase AOX which bypasses complex III and IV (53, 54). For this study we aimed at investigating the role of each respiratory complex in the adaptation process of A. fumigatus towards hypoxia.

Complex I transfers electrons from NADH to ubiquinone and thus is essential for the regeneration of NAD\(^+\). Its specific inhibition with rotenone resulted in only a slight reduction of growth of A. fumigatus under hypoxia. Interestingly, it was shown that rotenone only partially inhibits the oxidation of NADH in A. fumigatus (71). Hence, the low inhibitory effect of rotenone might be due to a compensatory reaction of alternative NADH dehydrogenases. These can be specifically inhibited by flavone (71). In the presence of flavone, growth of A. fumigatus was reduced independently of the level of oxygen. Even the combination of flavone and rotenone had no significant effect on the hypoxic growth of A. fumigatus, indicating that complex I and the alternative NADH:ubiquinone oxidoreductase are not absolutely essential during hypoxic growth. This suggests that bypass routes exist under oxygen-limiting conditions and electrons may enter the quinone pool independently of complex I.

The succinate dehydrogenase (complex II) oxidizes succinate to fumarate and transfers the electrons to ubiquinone. Disodium malonate is a competitive inhibitor of complex II (54). However, the inhibitory effect of disodium malonate on the growth of A. fumigatus was
independent of the oxygen availability indicating a minor role of complex II in the adaptation process of the fungi towards hypoxia.

Electrons of the ubiquinone pool can be either transferred to oxygen via cytochrome c by complex III and IV or by the alternative oxidase (53, 54). We could demonstrate that the alternative oxidase AOX is not essential for hypoxic growth since inhibition of AOX was independent of the oxygen availability. In agreement with our data, hypoxic growth of the A. fumigatus Δaox strain was like the wild type (11). Interestingly, under normoxic conditions a strain deleted for srbA was more susceptible to the alternative oxidase inhibitor SHAM. Although transcript levels of aox were increased in the ΔsrB mutant, no altered gene expression could be observed for cytochrome C. These data indicate that in ΔsrB the electron transport proceeds via complex III and IV, but is also partially dependent on AOX illustrated by the up-regulation of the corresponding aox gene in the mutant. Recently, it was demonstrated that beside electron transport the alternative oxidase is also involved in the oxidative stress response and macrophage killing of A. fumigatus (11). Remarkably, inhibition of complex III by antimycin A provoked a strong growth defect of A. fumigatus during hypoxia in a dose-dependent manner of the inhibitor, which was not observed under normoxic conditions. Furthermore, in the presence of the complex IV inhibitor sodium azide growth of A. fumigatus was significantly reduced under hypoxic compared to normoxic conditions. Additionally, we could demonstrate that the transcripts of the cytochrome c oxidase subunit coxVb and the rcf2-like gene rcfB increased during hypoxia. These findings are consistent with the increased abundance of components of respiratory complex III and IV in our proteome study of the long-term response of A. fumigatus to hypoxia (13). In this context it is interesting to note that in S. cerevisiae coxVb is the more active isoform during hypoxia whereas coxVa represents the dominating aerobic isoform (72). The proteins Rcf1 and Rcf2 are members of the hypoxia-induced gene 1 (Hig1) protein family and are involved in the
assembly of the cytochrome c oxidase supercomplex in yeast (37). Although the *A. fumigatus*
\(\Delta rcfB \) deletion strain was still able to grow, reduced formation of conidia was observed during
mild hypoxia (1 % \(O_2 \)). Remarkably Rcf1 is required for hypoxic growth in yeast (55).
However, transcripts of the corresponding \(rcf1 \) homologue in *A. fumigatus* were not found to
be differentially regulated in our microarray data.

Overall, in *A. fumigatus* a functional electron transport chain obviously plays an essential role
for hypoxic growth. This particularly applies to respiratory complex III and IV, which might
be involved in sensing and adapting to hypoxia by post-translational protein modifications,
e.g. nitrotyrosination (16, 17).

In conclusion, this study analyzed the impact of aerobic respiration and reductive pathways on
hypoxic growth of *A. fumigatus*. Characterization of the *A. fumigatus* deletion strains \(\Delta niiA, \)
\(\Delta niaD, \Delta frdA, \Delta osmA \) and \(\Delta frdA/\Delta osmA \) revealed that neither nitrate nor fumarate were used
as alternative electron acceptors under oxygen limiting conditions. In accordance with this
finding we were able to demonstrate that a functional electron transport chain, especially
complex III and IV, is essential for the adaptation of *A. fumigatus* towards hypoxic growth
conditions.

Acknowledgements

This work was supported by funding from the German-Israeli Foundation for Scientific
Research and Development (GIF No. 996-47, 12/2008), the ERA-Net Pathogenomics project
OXYstress, and the International Leibniz Research School (ILRS) for Microbial and
Biomolecular Interactions as part of the DFG-funded excellence graduate school Jena School
for Microbial Communication (JSMC).
Figures:

Fig. 1: Gene set enrichment (GSE) analysis of up- (A) and down-regulated (B) genes during long-term exposure of *A. fumigatus* to hypoxia based on FunCat classification.

Fig. 2: Confirmation of the expression of hypoxia-induced transcripts during cultivation of *A. fumigatus* in an oxygen-controlled chemostat by Northern blot. *A. fumigatus* was cultivated in a continuous culture under either normoxic or hypoxic conditions for 6 days. Left panel: Northern hybridizations of up-regulated genes. RNA was isolated from normoxic and hypoxic samples. 10 µg RNA were loaded per lane. rRNA bands are displayed as a loading control. Right panel: Microarray fold-changes and p-value of the corresponding genes.

Fig. 3: Regulation of flavohemoprotein *fhpA* during hypoxic growth conditions in dependence of the nitrogen source. A) Northern blot analysis of *fhpA*: *A. fumigatus* ATCC 46645 was cultivated under hypoxia in batch fermentation using nitrate or glutamine as nitrogen source. RNA was isolated from samples taken after 0, 3, 6, 12 and 24 h of hypoxia and 10 µg were loaded per lane. rRNA bands are displayed as a loading control. B) Fluorescence studies of the FhpA-eGFP fusion strain: *A. fumigatus* FhpA-eGFP was cultivated in AMM containing nitrate or glutamine as nitrogen source. After 14 h precultivation under normoxic conditions cultures were incubated for a further 24 h at 1 % O₂. Using a constant exposure time fluorescence signals were monitored after 0, 3, 6, 12 and 24 h of hypoxia. Size bar represents 20 µm.

Fig. 4: Growth of nitrate and nitrite reductase deletion strains under nitrosative stress conditions. 5 µL aliquots of each strain were spotted in a serial 10-fold dilution on AMM agar plates with 20 mM glutamine as primary nitrogen source and 0, 40 or 80 mM NaNO₂ at
pH 4.5 to impose nitrosative stress. Growth was documented after 48 h incubation at 37 °C under normoxic conditions.

Fig. 5: A+B) Analysis of fumarate respiration during batch cultivation of *A. fumigatus* under hypoxic conditions. *A. fumigatus CEA17ΔakuB*^{KU80} was cultivated under hypoxia in batch fermentation. Samples were taken after 0, 3, 6, 12 and 24 h of hypoxia. A) Northern blot analysis of *frdA* and *osmA*: 10 µg RNA were loaded per lane. rRNA was used as loading control. B) Quantification of succinic acid in the supernatant. C + D) Influence of TCEP on growth of fumarate reductase deletion strains. C) 5 µL aliquots of each strain were spotted in a serial 10-fold dilution on AMM agar plates containing 0 mM or 10 mM TCEP. D) 2x10³ conidia per well were cultivated in presence of 0 – 20 mM TCEP. Growth differences were detected after 72 h incubation at 37 °C under normoxic conditions.

Fig. 6: Impact of the inhibition of complex III and IV on growth of *A. fumigatus* during hypoxia. 5 µL aliquots of wild type and Δ*srbA* strain were spotted in a serial 10-fold dilution on AMM agar plates in the presence of A) antimycin A (0-20 µM) and B) sodium azide (0-1 mM). Growth differences were detected after 3 or 6 days incubation at 37 °C under normoxic and hypoxic conditions.

Fig. 7: A) Impact of the inhibition of the alternative oxidase on growth of *A. fumigatus* under hypoxic conditions. 5 µL aliquots of wild type and Δ*srbA* strain were spotted in a serial 10-fold dilution on AMM agar plates in the presence of SHAM (0-10 mM). Growth differences were detected after 3 days incubation at 37 °C under normoxic and hypoxic conditions. B) Northern blot analysis of *A. fumigatus ΔsrbA*: 100 mL AMM were inoculated with 10⁸ conidia of *A. fumigatus* wild type or Δ*srbA* and incubated for 24 h at 37 °C and 200 rpm. RNA was isolated and 10 µg RNA were loaded per lane. rRNA bands are displayed as a loading control.
Fig. 8: Growth of *A. fumigatus ΔrcfB* under normoxic and hypoxic conditions.

Wild type and the deletion strains ΔrcfB and ΔsrbA were grown on AMM agar plates under normoxia or hypoxia with a partial pressure of either 1% pO$_2$ or 0.2% pO$_2$. Spores were serially diluted in H$_2$O and 5 µL containing 10^5 to 10^2 spores were inoculated on the plates. Agar plates were incubated for 48 h at 37°C and 5% CO$_2$.

Table 1. Overview of the up-regulated transcripts associated with nitrate metabolism.

Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O’Neil S,
Paulsen I, Penalva MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E,
Rawlins N, Rajandream MA, Reichard U, Renauld H, Robson GD, Rodriguez de
Cordoba S, Rodriguez-Pena JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M,
Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus

Gentleman R, Carey V., Huber W., Irizarry R., Dudoit S. (ed.), Bioinformatics and

T, Brakhage AA, and Goldman GH.** 2006. The akuB(KU80) mutant deficient for
nonhomologous end joining is a powerful tool for analyzing pathogenicity in *Aspergillus
fumigatus. Eukaryot Cell 5:207-211.

of a homologous transformation system for the human pathogenic fungus *Aspergillus
fumigatus based on the pyrG gene encoding orotidine 5’-monophosphate decarboxylase. Curr
Genet 33:378-385.

40.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Fold Change</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rRNA</td>
<td>3.79</td>
<td>5.85E-02</td>
</tr>
<tr>
<td>rfb</td>
<td>3.68</td>
<td>6.95E-03</td>
</tr>
<tr>
<td>coxVb</td>
<td>4.89</td>
<td>3.59E-04</td>
</tr>
<tr>
<td>niaD</td>
<td>37.73</td>
<td>9.94E-03</td>
</tr>
<tr>
<td>niaA</td>
<td>6.19</td>
<td>1.20E-02</td>
</tr>
<tr>
<td>cosA</td>
<td>321.22</td>
<td>2.93E-04</td>
</tr>
<tr>
<td>frdA</td>
<td>17.09</td>
<td>1.51E-04</td>
</tr>
<tr>
<td>osmA</td>
<td>3.79</td>
<td>5.85E-02</td>
</tr>
<tr>
<td>rcfB</td>
<td>3.79</td>
<td>5.85E-02</td>
</tr>
<tr>
<td>niiA</td>
<td>3.79</td>
<td>5.85E-02</td>
</tr>
<tr>
<td>niaD</td>
<td>3.79</td>
<td>5.85E-02</td>
</tr>
</tbody>
</table>
Batch cultivation
Time of hypoxia

A

<table>
<thead>
<tr>
<th></th>
<th>0h</th>
<th>3h</th>
<th>6h</th>
<th>12h</th>
<th>24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>frdA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>osmA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rRNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

Sucinic acid [mM]

Time of hypoxia [h]

C

0 mM TCEP

<table>
<thead>
<tr>
<th></th>
<th>10^5</th>
<th>10^4</th>
<th>10^3</th>
<th>10^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔfrdA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔosmA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔfrdA/ΔosmA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10 mM TCEP

<table>
<thead>
<tr>
<th></th>
<th>10^5</th>
<th>10^4</th>
<th>10^3</th>
<th>10^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔfrdA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔosmA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔfrdA/ΔosmA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>TCEP [mM]</th>
<th>0</th>
<th>2.5</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔfrdA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔosmA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔfrdA/ΔosmA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A. Complex III inhibitor - Antimycin A

WT

ΔsrbA

21 % O2

0 µM Antimycin A

5 µM Antimycin A

10 µM Antimycin A

20 µM Antimycin A

6 days 37°C

B. Complex IV inhibitor - Sodium azide (NaN₃)

WT

ΔsrbA

21 % O2

0 mM NaN₃

0.25 mM NaN₃

0.5 mM NaN₃

1 mM NaN₃

6 days 37°C
Alternative oxidase inhibitor - SHAM

21% O2 0.2% O2

WT
ΔsrbA
WT
ΔsrbA
WT
ΔsrbA
WT
ΔsrbA
0 mM SHAM
2.5 mM SHAM
5 mM SHAM
10 mM SHAM

A

RNA
CYA
aox
srbA
WT
ΔsrbA

B
Table 1. Overview of the up-regulated transcripts dealing with nitrate metabolism.

<table>
<thead>
<tr>
<th>description</th>
<th>accession</th>
<th>ratio</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate reductase NiaD</td>
<td>AFUA_1G12830</td>
<td>+4.69</td>
<td>0.000359</td>
</tr>
<tr>
<td>Nitrite reductase NiiA</td>
<td>AFUA_1G12840</td>
<td>+37.73</td>
<td>0.00994</td>
</tr>
<tr>
<td>Nitrate transporter CrnA</td>
<td>AFUA_1G12850</td>
<td>+6.2</td>
<td>0.013</td>
</tr>
<tr>
<td>High affinity nitrate transporter NrtB</td>
<td>AFUA_1G17470</td>
<td>+6.28</td>
<td>0.0923</td>
</tr>
<tr>
<td>Periplasmic nitrate reductase</td>
<td>AFUA_3G15190</td>
<td>+4.29</td>
<td>0.00952</td>
</tr>
<tr>
<td>Nitrate Reductase</td>
<td>AFUA_5G10420</td>
<td>+2.83</td>
<td>0.00242</td>
</tr>
<tr>
<td>Multicopper oxidase</td>
<td>AFUA_3G14950</td>
<td>+19.46</td>
<td>0.0303</td>
</tr>
</tbody>
</table>